![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralidm | GIF version |
Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
ralidm | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2355 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 | |
2 | anidm 376 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
3 | rsp2 2371 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
4 | 2, 3 | syl5bir 142 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) |
5 | 1, 4 | ralrimi 2390 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
6 | ax-1 5 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
7 | nfra1 2355 | . . . . 5 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
8 | 7 | 19.23 1568 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
9 | 6, 8 | sylibr 137 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
10 | df-ral 2311 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
11 | 9, 10 | sylibr 137 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) |
12 | 5, 11 | impbii 117 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∀wal 1241 ∃wex 1381 ∈ wcel 1393 ∀wral 2306 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-ral 2311 |
This theorem is referenced by: issref 4707 cnvpom 4860 |
Copyright terms: Public domain | W3C validator |