ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl2r Unicode version

Theorem simpl2r 958
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl2r  |-  ( ( ( ch  /\  ( ph  /\  ps )  /\  th )  /\  ta )  ->  ps )

Proof of Theorem simpl2r
StepHypRef Expression
1 simp2r 931 . 2  |-  ( ( ch  /\  ( ph  /\ 
ps )  /\  th )  ->  ps )
21adantr 261 1  |-  ( ( ( ch  /\  ( ph  /\  ps )  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 887
This theorem is referenced by:  prarloc  6601  ssfzo12bi  9081
  Copyright terms: Public domain W3C validator