ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.6dc Unicode version

Theorem pm2.6dc 759
Description: Case elimination for a decidable proposition. Based on theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
pm2.6dc  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( ( ph  ->  ps )  ->  ps ) ) )

Proof of Theorem pm2.6dc
StepHypRef Expression
1 pm2.1dc 745 . . 3  |-  (DECID  ph  ->  ( -.  ph  \/  ph )
)
2 pm3.44 635 . . 3  |-  ( ( ( -.  ph  ->  ps )  /\  ( ph  ->  ps ) )  -> 
( ( -.  ph  \/  ph )  ->  ps ) )
31, 2syl5com 26 . 2  |-  (DECID  ph  ->  ( ( ( -.  ph  ->  ps )  /\  ( ph  ->  ps ) )  ->  ps ) )
43expd 245 1  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  ->  ( ( ph  ->  ps )  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  jadc  760  jaddc  761  pm2.61dc  762
  Copyright terms: Public domain W3C validator