ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomi Unicode version

Theorem necomi 2290
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
Hypothesis
Ref Expression
necomi.1  |-  A  =/= 
B
Assertion
Ref Expression
necomi  |-  B  =/= 
A

Proof of Theorem necomi
StepHypRef Expression
1 necomi.1 . 2  |-  A  =/= 
B
2 necom 2289 . 2  |-  ( A  =/=  B  <->  B  =/=  A )
31, 2mpbi 133 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    =/= wne 2204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-ne 2206
This theorem is referenced by:  0nep0  3918  xp01disj  6017  ltneii  7114  1ne0  7983  0ne2  8131  pnfnemnf  8697  mnfnepnf  8698  fzprval  8944
  Copyright terms: Public domain W3C validator