Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necomi | Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
Ref | Expression |
---|---|
necomi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 | . 2 | |
2 | necom 2289 | . 2 | |
3 | 1, 2 | mpbi 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-ne 2206 |
This theorem is referenced by: 0nep0 3918 xp01disj 6017 ltneii 7114 1ne0 7983 0ne2 8131 pnfnemnf 8697 mnfnepnf 8698 fzprval 8944 |
Copyright terms: Public domain | W3C validator |