ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falorfal Unicode version

Theorem falorfal 1299
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falorfal  |-  ( ( F.  \/ F.  )  <-> F.  )

Proof of Theorem falorfal
StepHypRef Expression
1 oridm 674 1  |-  ( ( F.  \/ F.  )  <-> F.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 98    \/ wo 629   F. wfal 1248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator