Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  calemos Unicode version

Theorem calemos 2019
 Description: "Calemos", one of the syllogisms of Aristotelian logic. All is (PaM), no is (MeS), and exist, therefore some is not (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemos.maj
calemos.min
calemos.e
Assertion
Ref Expression
calemos

Proof of Theorem calemos
StepHypRef Expression
1 calemos.e . 2
2 calemos.min . . . . . 6
32spi 1429 . . . . 5
43con2i 557 . . . 4
5 calemos.maj . . . . 5
65spi 1429 . . . 4
74, 6nsyl 558 . . 3
87ancli 306 . 2
91, 8eximii 1493 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 97  wal 1241  wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427 This theorem depends on definitions:  df-bi 110 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator