![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdnth | Unicode version |
Description: A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdnth.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
bdnth |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdfal 9953 |
. 2
![]() ![]() | |
2 | fal 1250 |
. . 3
![]() ![]() ![]() | |
3 | bdnth.1 |
. . 3
![]() ![]() ![]() | |
4 | 2, 3 | 2false 617 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bd0 9944 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-bd0 9933 ax-bdim 9934 ax-bdn 9937 ax-bdeq 9940 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 |
This theorem is referenced by: bdcnul 9985 |
Copyright terms: Public domain | W3C validator |