Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.30dc Unicode version

Theorem 19.30dc 1518
 Description: Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.)
Assertion
Ref Expression
19.30dc DECID

Proof of Theorem 19.30dc
StepHypRef Expression
1 df-dc 743 . 2 DECID
2 olc 632 . . . 4
32a1d 22 . . 3
4 alnex 1388 . . . . 5
5 orel2 645 . . . . . 6
65al2imi 1347 . . . . 5
74, 6sylbir 125 . . . 4
8 orc 633 . . . 4
97, 8syl6 29 . . 3
103, 9jaoi 636 . 2
111, 10sylbi 114 1 DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wo 629  DECID wdc 742  wal 1241  wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-gen 1338  ax-ie2 1383 This theorem depends on definitions:  df-bi 110  df-dc 743  df-tru 1246  df-fal 1249 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator