New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax-xp GIF version

Axiom ax-xp 4079
 Description: State the axiom of cross product. This axiom guarantees the existence of the (Kuratowski) cross product of V with x. Axiom P5 of [Hailperin] p. 10.
Assertion
Ref Expression
ax-xp yz(z ywt(z = ⟪w, t t x))
Distinct variable group:   x,y,z,w,t

Detailed syntax breakdown of Axiom ax-xp
StepHypRef Expression
1 vz . . . . 5 set z
2 vy . . . . 5 set y
31, 2wel 1711 . . . 4 wff z y
41cv 1641 . . . . . . . 8 class z
5 vw . . . . . . . . . 10 set w
65cv 1641 . . . . . . . . 9 class w
7 vt . . . . . . . . . 10 set t
87cv 1641 . . . . . . . . 9 class t
96, 8copk 4057 . . . . . . . 8 class w, t
104, 9wceq 1642 . . . . . . 7 wff z = ⟪w, t
11 vx . . . . . . . 8 set x
127, 11wel 1711 . . . . . . 7 wff t x
1310, 12wa 358 . . . . . 6 wff (z = ⟪w, t t x)
1413, 7wex 1541 . . . . 5 wff t(z = ⟪w, t t x)
1514, 5wex 1541 . . . 4 wff wt(z = ⟪w, t t x)
163, 15wb 176 . . 3 wff (z ywt(z = ⟪w, t t x))
1716, 1wal 1540 . 2 wff z(z ywt(z = ⟪w, t t x))
1817, 2wex 1541 1 wff yz(z ywt(z = ⟪w, t t x))
 Colors of variables: wff set class This axiom is referenced by:  axxpprim  4090  xpkvexg  4285
 Copyright terms: Public domain W3C validator