MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znf1o Structured version   Visualization version   GIF version

Theorem znf1o 19719
Description: The function 𝐹 enumerates all equivalence classes in ℤ/n for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y 𝑌 = (ℤ/nℤ‘𝑁)
znf1o.b 𝐵 = (Base‘𝑌)
znf1o.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znf1o.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
Assertion
Ref Expression
znf1o (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)

Proof of Theorem znf1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 19712 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
3 crngring 18381 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
4 eqid 2610 . . . . . . 7 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
54zrhrhm 19679 . . . . . 6 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
6 zringbas 19643 . . . . . . 7 ℤ = (Base‘ℤring)
7 znf1o.b . . . . . . 7 𝐵 = (Base‘𝑌)
86, 7rhmf 18549 . . . . . 6 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶𝐵)
92, 3, 5, 84syl 19 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ⟶𝐵)
10 znf1o.w . . . . . 6 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
11 sseq1 3589 . . . . . . 7 (ℤ = if(𝑁 = 0, ℤ, (0..^𝑁)) → (ℤ ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
12 sseq1 3589 . . . . . . 7 ((0..^𝑁) = if(𝑁 = 0, ℤ, (0..^𝑁)) → ((0..^𝑁) ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
13 ssid 3587 . . . . . . 7 ℤ ⊆ ℤ
14 elfzoelz 12339 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
1514ssriv 3572 . . . . . . 7 (0..^𝑁) ⊆ ℤ
1611, 12, 13, 15keephyp 4102 . . . . . 6 if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ
1710, 16eqsstri 3598 . . . . 5 𝑊 ⊆ ℤ
18 fssres 5983 . . . . 5 (((ℤRHom‘𝑌):ℤ⟶𝐵𝑊 ⊆ ℤ) → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
199, 17, 18sylancl 693 . . . 4 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
20 znf1o.f . . . . 5 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
2120feq1i 5949 . . . 4 (𝐹:𝑊𝐵 ↔ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
2219, 21sylibr 223 . . 3 (𝑁 ∈ ℕ0𝐹:𝑊𝐵)
2320fveq1i 6104 . . . . . . . 8 (𝐹𝑥) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥)
24 fvres 6117 . . . . . . . . 9 (𝑥𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2524ad2antrl 760 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2623, 25syl5eq 2656 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2720fveq1i 6104 . . . . . . . 8 (𝐹𝑦) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦)
28 fvres 6117 . . . . . . . . 9 (𝑦𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
2928ad2antll 761 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3027, 29syl5eq 2656 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3126, 30eqeq12d 2625 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦)))
32 simpl 472 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ0)
33 simprl 790 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
3417, 33sseldi 3566 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
35 simprr 792 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
3617, 35sseldi 3566 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
371, 4zndvds 19717 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
3832, 34, 36, 37syl3anc 1318 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
39 elnn0 11171 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
40 simpl 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ)
41 simprl 790 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
4217, 41sseldi 3566 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
43 simprr 792 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
4417, 43sseldi 3566 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
45 moddvds 14829 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4640, 42, 44, 45syl3anc 1318 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4742zred 11358 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℝ)
48 nnrp 11718 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4948adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℝ+)
50 nnne0 10930 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
51 ifnefalse 4048 . . . . . . . . . . . . . . . 16 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5310, 52syl5eq 2656 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑊 = (0..^𝑁))
5453adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑊 = (0..^𝑁))
5541, 54eleqtrd 2690 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ (0..^𝑁))
56 elfzole1 12347 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 0 ≤ 𝑥)
5755, 56syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑥)
58 elfzolt2 12348 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 𝑥 < 𝑁)
5955, 58syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 < 𝑁)
60 modid 12557 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑁)) → (𝑥 mod 𝑁) = 𝑥)
6147, 49, 57, 59, 60syl22anc 1319 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑥 mod 𝑁) = 𝑥)
6244zred 11358 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℝ)
6343, 54eleqtrd 2690 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ (0..^𝑁))
64 elfzole1 12347 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 0 ≤ 𝑦)
6563, 64syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑦)
66 elfzolt2 12348 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 𝑦 < 𝑁)
6763, 66syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 < 𝑁)
68 modid 12557 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦)
6962, 49, 65, 67, 68syl22anc 1319 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑦 mod 𝑁) = 𝑦)
7061, 69eqeq12d 2625 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑥 = 𝑦))
7146, 70bitr3d 269 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
72 simpl 472 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 = 0)
7372breq1d 4593 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
74 id 22 . . . . . . . . . . . . 13 (𝑁 = 0 → 𝑁 = 0)
75 0nn0 11184 . . . . . . . . . . . . 13 0 ∈ ℕ0
7674, 75syl6eqel 2696 . . . . . . . . . . . 12 (𝑁 = 0 → 𝑁 ∈ ℕ0)
7776, 34sylan 487 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
7876, 36sylan 487 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
7977, 78zsubcld 11363 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥𝑦) ∈ ℤ)
80 0dvds 14840 . . . . . . . . . 10 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8179, 80syl 17 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8277zcnd 11359 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℂ)
8378zcnd 11359 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℂ)
8482, 83subeq0ad 10281 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
8573, 81, 843bitrd 293 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8671, 85jaoian 820 . . . . . . 7 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8739, 86sylanb 488 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8831, 38, 873bitrd 293 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
8988biimpd 218 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
9089ralrimivva 2954 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
91 dff13 6416 . . 3 (𝐹:𝑊1-1𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
9222, 90, 91sylanbrc 695 . 2 (𝑁 ∈ ℕ0𝐹:𝑊1-1𝐵)
93 zmodfzo 12555 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9493ancoms 468 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9553adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑊 = (0..^𝑁))
9694, 95eleqtrrd 2691 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ 𝑊)
97 zre 11258 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
98 modabs2 12566 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
9997, 48, 98syl2anr 494 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
100 simpl 472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ)
10115, 94sseldi 3566 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ ℤ)
102 simpr 476 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
103 moddvds 14829 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
104100, 101, 102, 103syl3anc 1318 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
10599, 104mpbid 221 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))
106 nnnn0 11176 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
107106adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ0)
1081, 4zndvds 19717 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
109107, 101, 102, 108syl3anc 1318 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
110105, 109mpbird 246 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧))
111110eqcomd 2616 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
112 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = (𝑧 mod 𝑁) → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
113112eqeq2d 2620 . . . . . . . . . . 11 (𝑦 = (𝑧 mod 𝑁) → (((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))))
114113rspcev 3282 . . . . . . . . . 10 (((𝑧 mod 𝑁) ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
11596, 111, 114syl2anc 691 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
116 iftrue 4042 . . . . . . . . . . . . 13 (𝑁 = 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = ℤ)
117116eleq2d 2673 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)) ↔ 𝑧 ∈ ℤ))
118117biimpar 501 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)))
119118, 10syl6eleqr 2699 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧𝑊)
120 eqidd 2611 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧))
121 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘𝑧))
122121eqeq2d 2620 . . . . . . . . . . 11 (𝑦 = 𝑧 → (((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)))
123122rspcev 3282 . . . . . . . . . 10 ((𝑧𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
124119, 120, 123syl2anc 691 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
125115, 124jaoian 820 . . . . . . . 8 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12639, 125sylanb 488 . . . . . . 7 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12727, 28syl5eq 2656 . . . . . . . . 9 (𝑦𝑊 → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
128127eqeq2d 2620 . . . . . . . 8 (𝑦𝑊 → (((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)))
129128rexbiia 3022 . . . . . . 7 (∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
130126, 129sylibr 223 . . . . . 6 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
131130ralrimiva 2949 . . . . 5 (𝑁 ∈ ℕ0 → ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
1321, 7, 4znzrhfo 19715 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto𝐵)
133 fofn 6030 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → (ℤRHom‘𝑌) Fn ℤ)
134 eqeq1 2614 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
135134rexbidv 3034 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
136135ralrn 6270 . . . . . 6 ((ℤRHom‘𝑌) Fn ℤ → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
137132, 133, 1363syl 18 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
138131, 137mpbird 246 . . . 4 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦))
139 forn 6031 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → ran (ℤRHom‘𝑌) = 𝐵)
140132, 139syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = 𝐵)
141140raleqdv 3121 . . . 4 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
142138, 141mpbid 221 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦))
143 dffo3 6282 . . 3 (𝐹:𝑊onto𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
14422, 142, 143sylanbrc 695 . 2 (𝑁 ∈ ℕ0𝐹:𝑊onto𝐵)
145 df-f1o 5811 . 2 (𝐹:𝑊1-1-onto𝐵 ↔ (𝐹:𝑊1-1𝐵𝐹:𝑊onto𝐵))
14692, 144, 145sylanbrc 695 1 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  ifcif 4036   class class class wbr 4583  ran crn 5039  cres 5040   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  +crp 11708  ..^cfzo 12334   mod cmo 12530  cdvds 14821  Basecbs 15695  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535  ringzring 19637  ℤRHomczrh 19667  ℤ/nczn 19670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674
This theorem is referenced by:  zzngim  19720  znleval  19722  zntoslem  19724  znhash  19726  znunithash  19732  dchrisumlem1  24978
  Copyright terms: Public domain W3C validator