MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zerooval Structured version   Visualization version   GIF version

Theorem zerooval 16472
Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
zerooval (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))

Proof of Theorem zerooval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 16466 . . 3 ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
21a1i 11 . 2 (𝜑 → ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))))
3 fveq2 6103 . . . 4 (𝑐 = 𝐶 → (InitO‘𝑐) = (InitO‘𝐶))
4 fveq2 6103 . . . 4 (𝑐 = 𝐶 → (TermO‘𝑐) = (TermO‘𝐶))
53, 4ineq12d 3777 . . 3 (𝑐 = 𝐶 → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
65adantl 481 . 2 ((𝜑𝑐 = 𝐶) → ((InitO‘𝑐) ∩ (TermO‘𝑐)) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
7 initoval.c . 2 (𝜑𝐶 ∈ Cat)
8 fvex 6113 . . . 4 (InitO‘𝐶) ∈ V
98inex1 4727 . . 3 ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V
109a1i 11 . 2 (𝜑 → ((InitO‘𝐶) ∩ (TermO‘𝐶)) ∈ V)
112, 6, 7, 10fvmptd 6197 1 (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  cmpt 4643  cfv 5804  Basecbs 15695  Hom chom 15779  Catccat 16148  InitOcinito 16461  TermOctermo 16462  ZeroOczeroo 16463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-zeroo 16466
This theorem is referenced by:  iszeroo  16475  iszeroi  16482
  Copyright terms: Public domain W3C validator