MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem1 Structured version   Visualization version   GIF version

Theorem wilthlem1 24594
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃 are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 15329, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 12213 . . . . . . . . . 10 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ)
21adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ)
3 peano2zm 11297 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℤ)
54zcnd 11359 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℂ)
62peano2zd 11361 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℤ)
76zcnd 11359 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℂ)
85, 7mulcomd 9940 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 + 1) · (𝑁 − 1)))
92zcnd 11359 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℂ)
10 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
11 subsq 12834 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
129, 10, 11sylancl 693 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
139sqvald 12867 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁↑2) = (𝑁 · 𝑁))
14 sq1 12820 . . . . . . . 8 (1↑2) = 1
1514a1i 11 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1↑2) = 1)
1613, 15oveq12d 6567 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 · 𝑁) − 1))
178, 12, 163eqtr2d 2650 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 · 𝑁) − 1))
1817breq2d 4595 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ 𝑃 ∥ ((𝑁 · 𝑁) − 1)))
19 1e0p1 11428 . . . . . . . 8 1 = (0 + 1)
2019oveq1i 6559 . . . . . . 7 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
21 0z 11265 . . . . . . . 8 0 ∈ ℤ
22 fzp1ss 12262 . . . . . . . 8 (0 ∈ ℤ → ((0 + 1)...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
2321, 22ax-mp 5 . . . . . . 7 ((0 + 1)...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
2420, 23eqsstri 3598 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
25 simpr 476 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1)))
2624, 25sseldi 3566 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...(𝑃 − 1)))
2726biantrurd 528 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 · 𝑁) − 1) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
2818, 27bitrd 267 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
29 simpl 472 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
30 euclemma 15263 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 − 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
3129, 4, 6, 30syl3anc 1318 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
32 prmnn 15226 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
33 fzm1ndvds 14882 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
3432, 33sylan 487 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
35 eqid 2610 . . . . 5 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
3635prmdiveq 15329 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3729, 2, 34, 36syl3anc 1318 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3828, 31, 373bitr3rd 298 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
3929, 32syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ)
40 1zzd 11285 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈ ℤ)
41 moddvds 14829 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
4239, 2, 40, 41syl3anc 1318 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
43 elfznn 12241 . . . . . . . 8 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ)
4443adantl 481 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ)
4544nnred 10912 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℝ)
4639nnrpd 11746 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ+)
4744nnnn0d 11228 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ0)
4847nn0ge0d 11231 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ 𝑁)
49 elfzle2 12216 . . . . . . . 8 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ≤ (𝑃 − 1))
5049adantl 481 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ≤ (𝑃 − 1))
51 prmz 15227 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
52 zltlem1 11307 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
531, 51, 52syl2anr 494 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
5450, 53mpbird 246 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
55 modid 12557 . . . . . 6 (((𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑁𝑁 < 𝑃)) → (𝑁 mod 𝑃) = 𝑁)
5645, 46, 48, 54, 55syl22anc 1319 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 mod 𝑃) = 𝑁)
5739nnred 10912 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ)
58 prmuz2 15246 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
5929, 58syl 17 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
60 eluz2b2 11637 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
6160simprbi 479 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
6259, 61syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 < 𝑃)
63 1mod 12564 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
6457, 62, 63syl2anc 691 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 mod 𝑃) = 1)
6556, 64eqeq12d 2625 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑁 = 1))
6642, 65bitr3d 269 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − 1) ↔ 𝑁 = 1))
6740znegcld 11360 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℤ)
68 moddvds 14829 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
6939, 2, 67, 68syl3anc 1318 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
7039nncnd 10913 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℂ)
7170mulid2d 9937 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 · 𝑃) = 𝑃)
7271oveq2d 6565 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
73 neg1cn 11001 . . . . . . . . 9 -1 ∈ ℂ
74 addcom 10101 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (-1 + 𝑃) = (𝑃 + -1))
7573, 70, 74sylancr 694 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + 𝑃) = (𝑃 + -1))
76 negsub 10208 . . . . . . . . 9 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
7770, 10, 76sylancl 693 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 + -1) = (𝑃 − 1))
7872, 75, 773eqtrd 2648 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (𝑃 − 1))
7978oveq1d 6564 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = ((𝑃 − 1) mod 𝑃))
80 neg1rr 11002 . . . . . . . 8 -1 ∈ ℝ
8180a1i 11 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℝ)
82 modcyc 12567 . . . . . . 7 ((-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
8381, 46, 40, 82syl3anc 1318 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
84 peano2rem 10227 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
8557, 84syl 17 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℝ)
86 nnm1nn0 11211 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
8739, 86syl 17 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℕ0)
8887nn0ge0d 11231 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ (𝑃 − 1))
8957ltm1d 10835 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) < 𝑃)
90 modid 12557 . . . . . . 7 ((((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9185, 46, 88, 89, 90syl22anc 1319 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9279, 83, 913eqtr3d 2652 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 mod 𝑃) = (𝑃 − 1))
9356, 92eqeq12d 2625 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑁 = (𝑃 − 1)))
94 subneg 10209 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − -1) = (𝑁 + 1))
959, 10, 94sylancl 693 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − -1) = (𝑁 + 1))
9695breq2d 4595 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − -1) ↔ 𝑃 ∥ (𝑁 + 1)))
9769, 93, 963bitr3rd 298 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 + 1) ↔ 𝑁 = (𝑃 − 1)))
9866, 97orbi12d 742 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
9938, 98bitrd 267 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197   mod cmo 12530  cexp 12722  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309
This theorem is referenced by:  wilthlem2  24595
  Copyright terms: Public domain W3C validator