MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem3a Structured version   Visualization version   GIF version

Theorem wfrlem3a 7304
Description: Lemma for well-founded recursion. Show membership in the class of acceptable functions. (Contributed by Scott Fenton, 31-Jul-2020.)
Hypotheses
Ref Expression
wfrlem1.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
wfrlem3a.2 𝐺 ∈ V
Assertion
Ref Expression
wfrlem3a (𝐺𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
Distinct variable groups:   𝐴,𝑓,𝑤,𝑥,𝑦,𝑧   𝑓,𝐹,𝑤,𝑥,𝑦,𝑧   𝑅,𝑓,𝑤,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem wfrlem3a
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 wfrlem3a.2 . 2 𝐺 ∈ V
2 fneq1 5893 . . . 4 (𝑔 = 𝐺 → (𝑔 Fn 𝑧𝐺 Fn 𝑧))
3 fveq1 6102 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑤) = (𝐺𝑤))
4 reseq1 5311 . . . . . . 7 (𝑔 = 𝐺 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))
54fveq2d 6107 . . . . . 6 (𝑔 = 𝐺 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))
63, 5eqeq12d 2625 . . . . 5 (𝑔 = 𝐺 → ((𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
76ralbidv 2969 . . . 4 (𝑔 = 𝐺 → (∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
82, 73anbi13d 1393 . . 3 (𝑔 = 𝐺 → ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))))
98exbidv 1837 . 2 (𝑔 = 𝐺 → (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))))
10 wfrlem1.1 . . 3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1110wfrlem1 7301 . 2 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
121, 9, 11elab2 3323 1 (𝐺𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  wss 3540  cres 5040  Predcpred 5596   Fn wfn 5799  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812
This theorem is referenced by:  wfrlem17  7318
  Copyright terms: Public domain W3C validator