MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3 Structured version   Visualization version   GIF version

Theorem wfr3 7322
Description: The principle of Well-Founded Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 7320 and wfr2 7321 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr3.1 𝑅 We 𝐴
wfr3.2 𝑅 Se 𝐴
wfr3.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr3 ((𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝐺   𝑧,𝐻   𝑧,𝑅

Proof of Theorem wfr3
StepHypRef Expression
1 wfr3.1 . . 3 𝑅 We 𝐴
2 wfr3.2 . . 3 𝑅 Se 𝐴
31, 2pm3.2i 470 . 2 (𝑅 We 𝐴𝑅 Se 𝐴)
4 wfr3.3 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
51, 2, 4wfr1 7320 . . 3 𝐹 Fn 𝐴
61, 2, 4wfr2 7321 . . . 4 (𝑧𝐴 → (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
76rgen 2906 . . 3 𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85, 7pm3.2i 470 . 2 (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
9 wfr3g 7300 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
103, 8, 9mp3an12 1406 1 ((𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wral 2896   Se wse 4995   We wwe 4996  cres 5040  Predcpred 5596   Fn wfn 5799  cfv 5804  wrecscwrecs 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-wrecs 7294
This theorem is referenced by:  tfr3ALT  7385
  Copyright terms: Public domain W3C validator