MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem9 Structured version   Visualization version   GIF version

Theorem vdwlem9 15531
Description: Lemma for vdw 15536. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
vdwlem9.m (𝜑𝑀 ∈ ℕ)
vdwlem9.w (𝜑𝑊 ∈ ℕ)
vdwlem9.g (𝜑 → ∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
vdwlem9.v (𝜑𝑉 ∈ ℕ)
vdwlem9.a (𝜑 → ∀𝑓 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉))𝐾 MonoAP 𝑓)
vdwlem9.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem9.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
Assertion
Ref Expression
vdwlem9 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Distinct variable groups:   𝑔,𝑛,𝑥,𝑦,𝜑   𝑥,𝑓,𝑦,𝑉   𝑓,𝑊,𝑥,𝑦   𝑓,𝑔,𝐹,𝑥,𝑦   𝑓,𝑛,𝑠,𝐾,𝑔,𝑥,𝑦   𝑓,𝑀,𝑔,𝑛,𝑥,𝑦   𝑅,𝑓,𝑔,𝑛,𝑠,𝑥,𝑦   𝑔,𝐻,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐹(𝑛,𝑠)   𝐻(𝑓,𝑛,𝑠)   𝑀(𝑠)   𝑉(𝑔,𝑛,𝑠)   𝑊(𝑔,𝑛,𝑠)

Proof of Theorem vdwlem9
Dummy variables 𝑎 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem9.v . . . . 5 (𝜑𝑉 ∈ ℕ)
2 vdwlem9.w . . . . 5 (𝜑𝑊 ∈ ℕ)
3 vdw.r . . . . 5 (𝜑𝑅 ∈ Fin)
4 vdwlem9.h . . . . 5 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
5 vdwlem9.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
61, 2, 3, 4, 5vdwlem4 15526 . . . 4 (𝜑𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
7 ovex 6577 . . . . 5 (𝑅𝑚 (1...𝑊)) ∈ V
8 ovex 6577 . . . . 5 (1...𝑉) ∈ V
97, 8elmap 7772 . . . 4 (𝐹 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉)) ↔ 𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
106, 9sylibr 223 . . 3 (𝜑𝐹 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉)))
11 vdwlem9.a . . 3 (𝜑 → ∀𝑓 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉))𝐾 MonoAP 𝑓)
12 breq2 4587 . . . 4 (𝑓 = 𝐹 → (𝐾 MonoAP 𝑓𝐾 MonoAP 𝐹))
1312rspcv 3278 . . 3 (𝐹 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉)) → (∀𝑓 ∈ ((𝑅𝑚 (1...𝑊)) ↑𝑚 (1...𝑉))𝐾 MonoAP 𝑓𝐾 MonoAP 𝐹))
1410, 11, 13sylc 63 . 2 (𝜑𝐾 MonoAP 𝐹)
15 vdwlem9.k . . . . . 6 (𝜑𝐾 ∈ (ℤ‘2))
16 eluz2nn 11602 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
1715, 16syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ)
1817nnnn0d 11228 . . . 4 (𝜑𝐾 ∈ ℕ0)
198, 18, 6vdwmc 15520 . . 3 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔})))
20 vdwlem9.g . . . . . . . . 9 (𝜑 → ∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
2120adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
22 simprr 792 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))
2317adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ)
24 simprll 798 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℕ)
25 simprlr 799 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑑 ∈ ℕ)
26 vdwapid1 15517 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2723, 24, 25, 26syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2822, 27sseldd 3569 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝐹 “ {𝑔}))
29 ffn 5958 . . . . . . . . . . . . . 14 (𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)) → 𝐹 Fn (1...𝑉))
306, 29syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 Fn (1...𝑉))
3130adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹 Fn (1...𝑉))
32 fniniseg 6246 . . . . . . . . . . . 12 (𝐹 Fn (1...𝑉) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3331, 32syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3428, 33mpbid 221 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔))
3534simprd 478 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = 𝑔)
366adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
3734simpld 474 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (1...𝑉))
3836, 37ffvelrnd 6268 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) ∈ (𝑅𝑚 (1...𝑊)))
3935, 38eqeltrrd 2689 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔 ∈ (𝑅𝑚 (1...𝑊)))
40 rsp 2913 . . . . . . . 8 (∀𝑔 ∈ (𝑅𝑚 (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (𝑔 ∈ (𝑅𝑚 (1...𝑊)) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
4121, 39, 40sylc 63 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
421adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℕ)
432adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℕ)
443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑅 ∈ Fin)
454adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
46 vdwlem9.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
4746adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑀 ∈ ℕ)
48 ovex 6577 . . . . . . . . . . . 12 (1...𝑊) ∈ V
49 elmapg 7757 . . . . . . . . . . . 12 ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → (𝑔 ∈ (𝑅𝑚 (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
5044, 48, 49sylancl 693 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑔 ∈ (𝑅𝑚 (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
5139, 50mpbid 221 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔:(1...𝑊)⟶𝑅)
5215adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ (ℤ‘2))
5342, 43, 44, 45, 5, 47, 51, 52, 24, 25, 22vdwlem7 15529 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
54 olc 398 . . . . . . . . . 10 ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))
5554a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
5653, 55jaod 394 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
57 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥 − 1) = (𝑎 − 1))
5857oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥 − 1) + 𝑉) = ((𝑎 − 1) + 𝑉))
5958oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝑎 − 1) + 𝑉)))
6059oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))
6160fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
6261mpteq2dv 4673 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6348mptex 6390 . . . . . . . . . . . . . 14 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ∈ V
6462, 5, 63fvmpt 6191 . . . . . . . . . . . . 13 (𝑎 ∈ (1...𝑉) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6537, 64syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6665, 35eqtr3d 2646 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = 𝑔)
6766breq2d 4595 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ↔ (𝐾 + 1) MonoAP 𝑔))
6818adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ0)
69 peano2nn0 11210 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
7068, 69syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐾 + 1) ∈ ℕ0)
71 nnm1nn0 11211 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
7224, 71syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℕ0)
73 nn0nnaddcl 11201 . . . . . . . . . . . . 13 (((𝑎 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7472, 42, 73syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7543, 74nnmulcld 10945 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · ((𝑎 − 1) + 𝑉)) ∈ ℕ)
7624, 42nnaddcld 10944 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℕ)
7743, 76nnmulcld 10945 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℕ)
7877nnzd 11357 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℤ)
79 2nn 11062 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
80 nnmulcl 10920 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
8179, 1, 80sylancr 694 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℕ)
822, 81nnmulcld 10945 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
8382nnzd 11357 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8483adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8524nnred 10912 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℝ)
8642nnred 10912 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℝ)
87 elfzle2 12216 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...𝑉) → 𝑎𝑉)
8837, 87syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎𝑉)
8985, 86, 86, 88leadd1dd 10520 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (𝑉 + 𝑉))
9042nncnd 10913 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℂ)
91902timesd 11152 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) = (𝑉 + 𝑉))
9289, 91breqtrrd 4611 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (2 · 𝑉))
9376nnred 10912 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℝ)
9481nnred 10912 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) ∈ ℝ)
9643nnred 10912 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℝ)
9743nngt0d 10941 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 0 < 𝑊)
98 lemul2 10755 . . . . . . . . . . . . . . 15 (((𝑎 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
9993, 95, 96, 97, 98syl112anc 1322 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
10092, 99mpbid 221 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
101 eluz2 11569 . . . . . . . . . . . . 13 ((𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))) ↔ ((𝑊 · (𝑎 + 𝑉)) ∈ ℤ ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ ∧ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
10278, 84, 100, 101syl3anbrc 1239 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))))
10343nncnd 10913 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℂ)
104 1cnd 9935 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 1 ∈ ℂ)
10572nn0cnd 11230 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℂ)
106105, 90addcld 9938 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℂ)
107103, 104, 106adddid 9943 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))))
108104, 105, 90addassd 9941 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (1 + ((𝑎 − 1) + 𝑉)))
109 ax-1cn 9873 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
11024nncnd 10913 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℂ)
111 pncan3 10168 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1 + (𝑎 − 1)) = 𝑎)
112109, 110, 111sylancr 694 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + (𝑎 − 1)) = 𝑎)
113112oveq1d 6564 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (𝑎 + 𝑉))
114108, 113eqtr3d 2646 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + ((𝑎 − 1) + 𝑉)) = (𝑎 + 𝑉))
115114oveq2d 6565 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = (𝑊 · (𝑎 + 𝑉)))
116103mulid1d 9936 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · 1) = 𝑊)
117116oveq1d 6564 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
118107, 115, 1173eqtr3d 2652 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
119118fveq2d 6107 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (ℤ‘(𝑊 · (𝑎 + 𝑉))) = (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
120102, 119eleqtrd 2690 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
121 oveq1 6556 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉))))
122121fveq2d 6107 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) = (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
123122cbvmptv 4678 . . . . . . . . . . 11 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = (𝑧 ∈ (1...𝑊) ↦ (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
12444, 70, 43, 75, 45, 120, 123vdwlem2 15524 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) → (𝐾 + 1) MonoAP 𝐻))
12567, 124sylbird 249 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (𝐾 + 1) MonoAP 𝐻))
126125orim2d 881 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12756, 126syld 46 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12841, 127mpd 15 . . . . . 6 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
129128expr 641 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
130129rexlimdvva 3020 . . . 4 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
131130exlimdv 1848 . . 3 (𝜑 → (∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
13219, 131sylbid 229 . 2 (𝜑 → (𝐾 MonoAP 𝐹 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
13314, 132mpd 15 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643  ccnv 5037  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  APcvdwa 15507   MonoAP cvdwm 15508   PolyAP cvdwp 15509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-hash 12980  df-vdwap 15510  df-vdwmc 15511  df-vdwpc 15512
This theorem is referenced by:  vdwlem10  15532
  Copyright terms: Public domain W3C validator