MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisuc Structured version   Visualization version   GIF version

Theorem unisuc 5718
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3745 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 4681 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 5646 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 4381 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 4392 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 4387 . . . . 5 {𝐴} = 𝐴
87uneq2i 3726 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2636 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2615 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 291 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  wss 3540  {csn 4125   cuni 4372  Tr wtr 4680  suc csuc 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-v 3175  df-un 3545  df-in 3547  df-ss 3554  df-sn 4126  df-pr 4128  df-uni 4373  df-tr 4681  df-suc 5646
This theorem is referenced by:  onunisuci  5758  ordunisuc  6924
  Copyright terms: Public domain W3C validator