MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Structured version   Visualization version   GIF version

Theorem tz7.49c 7428
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1 𝐹 Fn On
Assertion
Ref Expression
tz7.49c ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem tz7.49c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tz7.49c.1 . . 3 𝐹 Fn On
2 biid 250 . . 3 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
31, 2tz7.49 7427 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
4 3simpc 1053 . . . 4 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
5 onss 6882 . . . . . . . . 9 (𝑥 ∈ On → 𝑥 ⊆ On)
6 fnssres 5918 . . . . . . . . 9 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹𝑥) Fn 𝑥)
71, 5, 6sylancr 694 . . . . . . . 8 (𝑥 ∈ On → (𝐹𝑥) Fn 𝑥)
8 df-ima 5051 . . . . . . . . . 10 (𝐹𝑥) = ran (𝐹𝑥)
98eqeq1i 2615 . . . . . . . . 9 ((𝐹𝑥) = 𝐴 ↔ ran (𝐹𝑥) = 𝐴)
109biimpi 205 . . . . . . . 8 ((𝐹𝑥) = 𝐴 → ran (𝐹𝑥) = 𝐴)
117, 10anim12i 588 . . . . . . 7 ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) → ((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴))
1211anim1i 590 . . . . . 6 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
13 dff1o2 6055 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ ((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴))
14 3anan32 1043 . . . . . . 7 (((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴) ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1513, 14bitri 263 . . . . . 6 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1612, 15sylibr 223 . . . . 5 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴)
1716expl 646 . . . 4 (𝑥 ∈ On → (((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
184, 17syl5 33 . . 3 (𝑥 ∈ On → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
1918reximia 2992 . 2 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
203, 19syl 17 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  wss 3540  c0 3874  ccnv 5037  ran crn 5039  cres 5040  cima 5041  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812
This theorem is referenced by:  dfac8alem  8735  dnnumch1  36632
  Copyright terms: Public domain W3C validator