MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49 Structured version   Visualization version   GIF version

Theorem tz7.49 7427
Description: Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 10-Jan-2013.)
Hypotheses
Ref Expression
tz7.49.1 𝐹 Fn On
tz7.49.2 (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
Assertion
Ref Expression
tz7.49 ((𝐴𝐵𝜑) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem tz7.49
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2782 . . . . . . . . 9 ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
21ralbii 2963 . . . . . . . 8 (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
3 tz7.49.2 . . . . . . . . 9 (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
4 ralim 2932 . . . . . . . . 9 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
53, 4sylbi 206 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
62, 5syl5bir 232 . . . . . . 7 (𝜑 → (∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
7 tz7.49.1 . . . . . . . . 9 𝐹 Fn On
87tz7.48-3 7426 . . . . . . . 8 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
9 elex 3185 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
108, 9nsyl3 132 . . . . . . 7 (𝐴𝐵 → ¬ ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
116, 10nsyli 154 . . . . . 6 (𝜑 → (𝐴𝐵 → ¬ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅))
12 dfrex2 2979 . . . . . 6 (∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅ ↔ ¬ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
1311, 12syl6ibr 241 . . . . 5 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅))
14 imaeq2 5381 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1514difeq2d 3690 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ∖ (𝐹𝑥)) = (𝐴 ∖ (𝐹𝑦)))
1615eqeq1d 2612 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ∖ (𝐹𝑥)) = ∅ ↔ (𝐴 ∖ (𝐹𝑦)) = ∅))
1716onminex 6899 . . . . 5 (∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅ → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
1813, 17syl6 34 . . . 4 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)))
19 df-ne 2782 . . . . . . 7 ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ ↔ ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)
2019ralbii 2963 . . . . . 6 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ↔ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)
2120anbi2i 726 . . . . 5 (((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ↔ ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
2221rexbii 3023 . . . 4 (∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ↔ ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
2318, 22syl6ibr 241 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)))
24 nfra1 2925 . . . . 5 𝑥𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
253, 24nfxfr 1771 . . . 4 𝑥𝜑
26 simpllr 795 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)
27 fnfun 5902 . . . . . . . . . . . . . . . . 17 (𝐹 Fn On → Fun 𝐹)
287, 27ax-mp 5 . . . . . . . . . . . . . . . 16 Fun 𝐹
29 fvelima 6158 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑧 ∈ (𝐹𝑥)) → ∃𝑦𝑥 (𝐹𝑦) = 𝑧)
3028, 29mpan 702 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐹𝑥) → ∃𝑦𝑥 (𝐹𝑦) = 𝑧)
31 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑦𝜑
32 nfra1 2925 . . . . . . . . . . . . . . . . 17 𝑦𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅
3331, 32nfan 1816 . . . . . . . . . . . . . . . 16 𝑦(𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)
34 nfv 1830 . . . . . . . . . . . . . . . 16 𝑦(𝑥 ∈ On → 𝑧𝐴)
35 rsp 2913 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝑦𝑥 → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
3635adantld 482 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
37 onelon 5665 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3815neeq1d 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑦 → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
39 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4039, 15eleq12d 2682 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) ↔ (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))
4138, 40imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4241rspcv 3278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ On → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
433, 42syl5bi 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (𝜑 → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4443com23 84 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4537, 44syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4636, 45sylcom 30 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4746com3r 85 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4847imp 444 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))
4948expcomd 453 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → (𝑥 ∈ On → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
50 eldifi 3694 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → (𝐹𝑦) ∈ 𝐴)
51 eleq1 2676 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ 𝐴𝑧𝐴))
5250, 51syl5ibcom 234 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ((𝐹𝑦) = 𝑧𝑧𝐴))
5349, 52syl8 74 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → (𝑥 ∈ On → ((𝐹𝑦) = 𝑧𝑧𝐴))))
5453com34 89 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑧 → (𝑥 ∈ On → 𝑧𝐴))))
5533, 34, 54rexlimd 3008 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (∃𝑦𝑥 (𝐹𝑦) = 𝑧 → (𝑥 ∈ On → 𝑧𝐴)))
5630, 55syl5 33 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑧 ∈ (𝐹𝑥) → (𝑥 ∈ On → 𝑧𝐴)))
5756com23 84 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑥 ∈ On → (𝑧 ∈ (𝐹𝑥) → 𝑧𝐴)))
5857imp 444 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → (𝑧 ∈ (𝐹𝑥) → 𝑧𝐴))
5958ssrdv 3574 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → (𝐹𝑥) ⊆ 𝐴)
60 ssdif0 3896 . . . . . . . . . . . 12 (𝐴 ⊆ (𝐹𝑥) ↔ (𝐴 ∖ (𝐹𝑥)) = ∅)
6160biimpri 217 . . . . . . . . . . 11 ((𝐴 ∖ (𝐹𝑥)) = ∅ → 𝐴 ⊆ (𝐹𝑥))
6259, 61anim12i 588 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → ((𝐹𝑥) ⊆ 𝐴𝐴 ⊆ (𝐹𝑥)))
63 eqss 3583 . . . . . . . . . 10 ((𝐹𝑥) = 𝐴 ↔ ((𝐹𝑥) ⊆ 𝐴𝐴 ⊆ (𝐹𝑥)))
6462, 63sylibr 223 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → (𝐹𝑥) = 𝐴)
65 onss 6882 . . . . . . . . . . . . 13 (𝑥 ∈ On → 𝑥 ⊆ On)
6632, 31nfan 1816 . . . . . . . . . . . . . . . . 17 𝑦(∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑)
67 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑦 𝑥 ⊆ On
6866, 67nfan 1816 . . . . . . . . . . . . . . . 16 𝑦((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On)
69 nfv 1830 . . . . . . . . . . . . . . . . . 18 𝑧(((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥)
70 ssel 3562 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ⊆ On → (𝑦𝑥𝑦 ∈ On))
71 onss 6882 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → 𝑦 ⊆ On)
72 fndm 5904 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 Fn On → dom 𝐹 = On)
737, 72ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 dom 𝐹 = On
7471, 73syl6sseqr 3615 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → 𝑦 ⊆ dom 𝐹)
75 funfvima2 6397 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝐹𝑦 ⊆ dom 𝐹) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
7628, 74, 75sylancr 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ On → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
7770, 76syl6 34 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
7835com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ⊆ On → (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐴 ∖ (𝐹𝑦)) ≠ ∅)))
8070, 79, 44syl10 77 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ⊆ On → (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))))
8180imp4a 612 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ⊆ On → (𝑦𝑥 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
82 eldifn 3695 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ¬ (𝐹𝑦) ∈ (𝐹𝑦))
83 eleq1a 2683 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑧) ∈ (𝐹𝑦) → ((𝐹𝑦) = (𝐹𝑧) → (𝐹𝑦) ∈ (𝐹𝑦)))
8483con3d 147 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑧) ∈ (𝐹𝑦) → (¬ (𝐹𝑦) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))
8582, 84syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ((𝐹𝑧) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))
8681, 85syl8 74 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ⊆ On → (𝑦𝑥 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ((𝐹𝑧) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8786com34 89 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ⊆ On → (𝑦𝑥 → ((𝐹𝑧) ∈ (𝐹𝑦) → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8877, 87syldd 70 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8988com4r 92 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → ¬ (𝐹𝑦) = (𝐹𝑧)))))
9089imp31 447 . . . . . . . . . . . . . . . . . 18 ((((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥) → (𝑧𝑦 → ¬ (𝐹𝑦) = (𝐹𝑧)))
9169, 90ralrimi 2940 . . . . . . . . . . . . . . . . 17 ((((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥) → ∀𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))
9291ex 449 . . . . . . . . . . . . . . . 16 (((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) → (𝑦𝑥 → ∀𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)))
9368, 92ralrimi 2940 . . . . . . . . . . . . . . 15 (((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) → ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))
9493ex 449 . . . . . . . . . . . . . 14 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)))
9594ancld 574 . . . . . . . . . . . . 13 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → (𝑥 ⊆ On ∧ ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))))
967tz7.48lem 7423 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)) → Fun (𝐹𝑥))
9765, 95, 96syl56 35 . . . . . . . . . . . 12 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ∈ On → Fun (𝐹𝑥)))
9897ancoms 468 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑥 ∈ On → Fun (𝐹𝑥)))
9998imp 444 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → Fun (𝐹𝑥))
10099adantr 480 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → Fun (𝐹𝑥))
10126, 64, 1003jca 1235 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
102101exp41 636 . . . . . . 7 (𝜑 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
103102com23 84 . . . . . 6 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
104103com34 89 . . . . 5 (𝜑 → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
105104imp4a 612 . . . 4 (𝜑 → (𝑥 ∈ On → (((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))))
10625, 105reximdai 2995 . . 3 (𝜑 → (∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))
10723, 106syld 46 . 2 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))
108107impcom 445 1 ((𝐴𝐵𝜑) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ccnv 5037  dom cdm 5038  cres 5040  cima 5041  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812
This theorem is referenced by:  tz7.49c  7428
  Copyright terms: Public domain W3C validator