MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem3 Structured version   Visualization version   GIF version

Theorem ttukeylem3 9216
Description: Lemma for ttukey 9223. (Contributed by Mario Carneiro, 11-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem3
StepHypRef Expression
1 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
21tfr2 7381 . . 3 (𝐶 ∈ On → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
32adantl 481 . 2 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
4 eqidd 2611 . . 3 ((𝜑𝐶 ∈ On) → (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
5 simpr 476 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝑧 = (𝐺𝐶))
65dmeqd 5248 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = dom (𝐺𝐶))
71tfr1 7380 . . . . . . . . 9 𝐺 Fn On
8 onss 6882 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ⊆ On)
98ad2antlr 759 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝐶 ⊆ On)
10 fnssres 5918 . . . . . . . . 9 ((𝐺 Fn On ∧ 𝐶 ⊆ On) → (𝐺𝐶) Fn 𝐶)
117, 9, 10sylancr 694 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐺𝐶) Fn 𝐶)
12 fndm 5904 . . . . . . . 8 ((𝐺𝐶) Fn 𝐶 → dom (𝐺𝐶) = 𝐶)
1311, 12syl 17 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom (𝐺𝐶) = 𝐶)
146, 13eqtrd 2644 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1514unieqd 4382 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1614, 15eqeq12d 2625 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = dom 𝑧𝐶 = 𝐶))
1714eqeq1d 2612 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = ∅ ↔ 𝐶 = ∅))
185rneqd 5274 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = ran (𝐺𝐶))
19 df-ima 5051 . . . . . . . 8 (𝐺𝐶) = ran (𝐺𝐶)
2018, 19syl6eqr 2662 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2120unieqd 4382 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2217, 21ifbieq2d 4061 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = ∅, 𝐵, ran 𝑧) = if(𝐶 = ∅, 𝐵, (𝐺𝐶)))
235, 15fveq12d 6109 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝑧 dom 𝑧) = ((𝐺𝐶)‘ 𝐶))
2415fveq2d 6107 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐹 dom 𝑧) = (𝐹 𝐶))
2524sneqd 4137 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → {(𝐹 dom 𝑧)} = {(𝐹 𝐶)})
2623, 25uneq12d 3730 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) = (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}))
2726eleq1d 2672 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴 ↔ (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
28 eqidd 2611 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ∅ = ∅)
2927, 25, 28ifbieq12d 4063 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅) = if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
3023, 29uneq12d 3730 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)) = (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
3116, 22, 30ifbieq12d 4063 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
32 onuni 6885 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ∈ On)
3332ad3antlr 763 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ On)
34 sucidg 5720 . . . . . . . . 9 ( 𝐶 ∈ On → 𝐶 ∈ suc 𝐶)
3533, 34syl 17 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ suc 𝐶)
36 eloni 5650 . . . . . . . . . . 11 (𝐶 ∈ On → Ord 𝐶)
3736ad2antlr 759 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → Ord 𝐶)
38 orduniorsuc 6922 . . . . . . . . . 10 (Ord 𝐶 → (𝐶 = 𝐶𝐶 = suc 𝐶))
3937, 38syl 17 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐶 = 𝐶𝐶 = suc 𝐶))
4039orcanai 950 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 = suc 𝐶)
4135, 40eleqtrrd 2691 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶𝐶)
42 fvres 6117 . . . . . . 7 ( 𝐶𝐶 → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
4341, 42syl 17 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
4443uneq1d 3728 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) = ((𝐺 𝐶) ∪ {(𝐹 𝐶)}))
4544eleq1d 2672 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴 ↔ ((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
4645ifbid 4058 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) = if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
4743, 46uneq12d 3730 . . . . 5 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) = ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
4847ifeq2da 4067 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
4931, 48eqtrd 2644 . . 3 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
50 fnfun 5902 . . . . 5 (𝐺 Fn On → Fun 𝐺)
517, 50ax-mp 5 . . . 4 Fun 𝐺
52 simpr 476 . . . 4 ((𝜑𝐶 ∈ On) → 𝐶 ∈ On)
53 resfunexg 6384 . . . 4 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5451, 52, 53sylancr 694 . . 3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) ∈ V)
55 ttukeylem.2 . . . . . 6 (𝜑𝐵𝐴)
56 elex 3185 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
5755, 56syl 17 . . . . 5 (𝜑𝐵 ∈ V)
58 funimaexg 5889 . . . . . . 7 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5951, 58mpan 702 . . . . . 6 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
60 uniexg 6853 . . . . . 6 ((𝐺𝐶) ∈ V → (𝐺𝐶) ∈ V)
6159, 60syl 17 . . . . 5 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
62 ifcl 4080 . . . . 5 ((𝐵 ∈ V ∧ (𝐺𝐶) ∈ V) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
6357, 61, 62syl2an 493 . . . 4 ((𝜑𝐶 ∈ On) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
64 fvex 6113 . . . . 5 (𝐺 𝐶) ∈ V
65 snex 4835 . . . . . 6 {(𝐹 𝐶)} ∈ V
66 0ex 4718 . . . . . 6 ∅ ∈ V
6765, 66ifex 4106 . . . . 5 if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) ∈ V
6864, 67unex 6854 . . . 4 ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V
69 ifcl 4080 . . . 4 ((if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V ∧ ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
7063, 68, 69sylancl 693 . . 3 ((𝜑𝐶 ∈ On) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
714, 49, 54, 70fvmptd 6197 . 2 ((𝜑𝐶 ∈ On) → ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
723, 71eqtrd 2644 1 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wal 1473   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   cuni 4372  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  recscrecs 7354  Fincfn 7841  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-wrecs 7294  df-recs 7355
This theorem is referenced by:  ttukeylem4  9217  ttukeylem5  9218  ttukeylem6  9219  ttukeylem7  9220
  Copyright terms: Public domain W3C validator