MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem2 Structured version   Visualization version   GIF version

Theorem tsmsxplem2 21767
Description: Lemma for tsmsxp 21768. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
tsmsxp.j 𝐽 = (TopOpen‘𝐺)
tsmsxp.z 0 = (0g𝐺)
tsmsxp.p + = (+g𝐺)
tsmsxp.m = (-g𝐺)
tsmsxp.l (𝜑𝐿𝐽)
tsmsxp.3 (𝜑0𝐿)
tsmsxp.k (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
tsmsxp.4 (𝜑 → ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈)
tsmsxp.n (𝜑𝑁 ∈ (𝒫 𝐶 ∩ Fin))
tsmsxp.s (𝜑𝐷 ⊆ (𝐾 × 𝑁))
tsmsxp.x (𝜑 → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿)
tsmsxp.5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆)
tsmsxp.6 (𝜑 → ∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇)
Assertion
Ref Expression
tsmsxplem2 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝑈)
Distinct variable groups:   𝑔,𝑘, 0   𝑐,𝑑,𝑔,𝑗,𝑘,𝑥,𝐺   𝐵,𝑔,𝑘   𝐷,𝑔,𝑗,𝑘,𝑥   𝑔,𝐿,𝑗,𝑥   𝐴,𝑔,𝑗,𝑘   𝐾,𝑐,𝑑,𝑔,𝑗,𝑘,𝑥   𝑆,𝑐   𝐻,𝑑,𝑔,𝑗,𝑘,𝑥   𝑁,𝑐,𝑑,𝑔,𝑥   𝑈,𝑐,𝑑   ,𝑑,𝑔,𝑗,𝑥   𝐶,𝑔,𝑗,𝑘   𝑇,𝑐,𝑑,𝑔   + ,𝑐,𝑑,𝑔   𝐹,𝑐,𝑑,𝑔,𝑗,𝑘,𝑥   𝜑,𝑔,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑐,𝑑)   𝐴(𝑥,𝑐,𝑑)   𝐵(𝑥,𝑗,𝑐,𝑑)   𝐶(𝑥,𝑐,𝑑)   𝐷(𝑐,𝑑)   + (𝑥,𝑗,𝑘)   𝑆(𝑥,𝑔,𝑗,𝑘,𝑑)   𝑇(𝑥,𝑗,𝑘)   𝑈(𝑥,𝑔,𝑗,𝑘)   𝐻(𝑐)   𝐽(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   𝐿(𝑘,𝑐,𝑑)   (𝑘,𝑐)   𝑁(𝑗,𝑘)   𝑉(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   𝑊(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   0 (𝑥,𝑗,𝑐,𝑑)

Proof of Theorem tsmsxplem2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . 5 (𝜑𝐺 ∈ TopGrp)
2 tgpgrp 21692 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 tsmsxp.g . . . 4 (𝜑𝐺 ∈ CMnd)
5 isabl 18020 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
63, 4, 5sylanbrc 695 . . 3 (𝜑𝐺 ∈ Abel)
7 tsmsxp.b . . . 4 𝐵 = (Base‘𝐺)
8 tsmsxp.z . . . 4 0 = (0g𝐺)
9 tsmsxp.k . . . . . 6 (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
10 elfpw 8151 . . . . . . 7 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐾𝐴𝐾 ∈ Fin))
1110simprbi 479 . . . . . 6 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾 ∈ Fin)
129, 11syl 17 . . . . 5 (𝜑𝐾 ∈ Fin)
13 tsmsxp.n . . . . . 6 (𝜑𝑁 ∈ (𝒫 𝐶 ∩ Fin))
14 elfpw 8151 . . . . . . 7 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑁𝐶𝑁 ∈ Fin))
1514simprbi 479 . . . . . 6 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁 ∈ Fin)
1613, 15syl 17 . . . . 5 (𝜑𝑁 ∈ Fin)
17 xpfi 8116 . . . . 5 ((𝐾 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐾 × 𝑁) ∈ Fin)
1812, 16, 17syl2anc 691 . . . 4 (𝜑 → (𝐾 × 𝑁) ∈ Fin)
19 tsmsxp.f . . . . 5 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
2010simplbi 475 . . . . . . 7 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾𝐴)
219, 20syl 17 . . . . . 6 (𝜑𝐾𝐴)
2214simplbi 475 . . . . . . 7 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁𝐶)
2313, 22syl 17 . . . . . 6 (𝜑𝑁𝐶)
24 xpss12 5148 . . . . . 6 ((𝐾𝐴𝑁𝐶) → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶))
2521, 23, 24syl2anc 691 . . . . 5 (𝜑 → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶))
2619, 25fssresd 5984 . . . 4 (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)):(𝐾 × 𝑁)⟶𝐵)
27 tsmsxp.3 . . . . 5 (𝜑0𝐿)
2826, 18, 27fdmfifsupp 8168 . . . 4 (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)) finSupp 0 )
297, 8, 4, 18, 26, 28gsumcl 18139 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵)
30 tsmsxp.h . . . . 5 (𝜑𝐻:𝐴𝐵)
3130, 21fssresd 5984 . . . 4 (𝜑 → (𝐻𝐾):𝐾𝐵)
3231, 12, 27fdmfifsupp 8168 . . . 4 (𝜑 → (𝐻𝐾) finSupp 0 )
337, 8, 4, 12, 31, 32gsumcl 18139 . . 3 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝐵)
34 tsmsxp.p . . . 4 + = (+g𝐺)
35 tsmsxp.m . . . 4 = (-g𝐺)
367, 34, 35ablpncan3 18045 . . 3 ((𝐺 ∈ Abel ∧ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵 ∧ (𝐺 Σg (𝐻𝐾)) ∈ 𝐵)) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻𝐾)))
376, 29, 33, 36syl12anc 1316 . 2 (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻𝐾)))
38 tsmsxp.5 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆)
394adantr 480 . . . . . . . 8 ((𝜑𝑦𝐾) → 𝐺 ∈ CMnd)
40 snfi 7923 . . . . . . . . 9 {𝑦} ∈ Fin
4116adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐾) → 𝑁 ∈ Fin)
42 xpfi 8116 . . . . . . . . 9 (({𝑦} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝑦} × 𝑁) ∈ Fin)
4340, 41, 42sylancr 694 . . . . . . . 8 ((𝜑𝑦𝐾) → ({𝑦} × 𝑁) ∈ Fin)
4419adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐾) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
4521sselda 3568 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝑦𝐴)
4645snssd 4281 . . . . . . . . . 10 ((𝜑𝑦𝐾) → {𝑦} ⊆ 𝐴)
4723adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐾) → 𝑁𝐶)
48 xpss12 5148 . . . . . . . . . 10 (({𝑦} ⊆ 𝐴𝑁𝐶) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶))
4946, 47, 48syl2anc 691 . . . . . . . . 9 ((𝜑𝑦𝐾) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶))
5044, 49fssresd 5984 . . . . . . . 8 ((𝜑𝑦𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)):({𝑦} × 𝑁)⟶𝐵)
51 fvex 6113 . . . . . . . . . . 11 (0g𝐺) ∈ V
528, 51eqeltri 2684 . . . . . . . . . 10 0 ∈ V
5352a1i 11 . . . . . . . . 9 ((𝜑𝑦𝐾) → 0 ∈ V)
5450, 43, 53fdmfifsupp 8168 . . . . . . . 8 ((𝜑𝑦𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)) finSupp 0 )
557, 8, 39, 43, 50, 54gsumcl 18139 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ 𝐵)
56 eqid 2610 . . . . . . 7 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))
5755, 56fmptd 6292 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))):𝐾𝐵)
58 ovex 6577 . . . . . . . 8 (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ V
5958a1i 11 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ V)
6056, 12, 59, 27fsuppmptdm 8169 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) finSupp 0 )
617, 8, 35, 6, 12, 31, 57, 32, 60gsumsub 18171 . . . . 5 (𝜑 → (𝐺 Σg ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
62 fvex 6113 . . . . . . . 8 (𝐻𝑦) ∈ V
6362a1i 11 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐻𝑦) ∈ V)
6430, 21feqresmpt 6160 . . . . . . 7 (𝜑 → (𝐻𝐾) = (𝑦𝐾 ↦ (𝐻𝑦)))
65 eqidd 2611 . . . . . . 7 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
6612, 63, 59, 64, 65offval2 6812 . . . . . 6 (𝜑 → ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))
6766oveq2d 6565 . . . . 5 (𝜑 → (𝐺 Σg ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
68 cmnmnd 18031 . . . . . . . . . . . 12 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
6939, 68syl 17 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝐺 ∈ Mnd)
70 simpr 476 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝑦𝐾)
7144adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
7245adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝑦𝐴)
7347sselda 3568 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝑧𝐶)
7471, 72, 73fovrnd 6704 . . . . . . . . . . . . 13 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦𝐹𝑧) ∈ 𝐵)
75 eqid 2610 . . . . . . . . . . . . 13 (𝑧𝑁 ↦ (𝑦𝐹𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧))
7674, 75fmptd 6292 . . . . . . . . . . . 12 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦𝐹𝑧)):𝑁𝐵)
77 ovex 6577 . . . . . . . . . . . . . 14 (𝑦𝐹𝑧) ∈ V
7877a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦𝐹𝑧) ∈ V)
7975, 41, 78, 53fsuppmptdm 8169 . . . . . . . . . . . 12 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦𝐹𝑧)) finSupp 0 )
807, 8, 39, 41, 76, 79gsumcl 18139 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵)
81 velsn 4141 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦)
82 ovres 6698 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ {𝑦} ∧ 𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧))
8381, 82sylanbr 489 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑦𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧))
84 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (𝑤𝐹𝑧) = (𝑦𝐹𝑧))
8584adantr 480 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑦𝑧𝑁) → (𝑤𝐹𝑧) = (𝑦𝐹𝑧))
8683, 85eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑤 = 𝑦𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑦𝐹𝑧))
8786mpteq2dva 4672 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧)))
8887oveq2d 6565 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
897, 88gsumsn 18177 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑦𝐾 ∧ (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
9069, 70, 80, 89syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
9140a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → {𝑦} ∈ Fin)
927, 8, 39, 91, 41, 50, 54gsumxp 18198 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))))
93 ovres 6698 . . . . . . . . . . . . 13 ((𝑦𝐾𝑧𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧))
9493adantll 746 . . . . . . . . . . . 12 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧))
9594mpteq2dva 4672 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧)))
9695oveq2d 6565 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
9790, 92, 963eqtr4d 2654 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))
9897mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))))
9998oveq2d 6565 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))))
1007, 8, 4, 12, 16, 26, 28gsumxp 18198 . . . . . . 7 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) = (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))))
10199, 100eqtr4d 2647 . . . . . 6 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))
102101oveq2d 6565 . . . . 5 (𝜑 → ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))
10361, 67, 1023eqtr3d 2652 . . . 4 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))
104 tsmsxp.x . . . . . . . 8 (𝜑 → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿)
105 fveq2 6103 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
106 sneq 4135 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → {𝑥} = {𝑦})
107106xpeq1d 5062 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} × 𝑁) = ({𝑦} × 𝑁))
108107reseq2d 5317 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 ↾ ({𝑥} × 𝑁)) = (𝐹 ↾ ({𝑦} × 𝑁)))
109108oveq2d 6565 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁))) = (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))
110105, 109oveq12d 6567 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) = ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
111110eleq1d 2672 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿 ↔ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿))
112111rspccva 3281 . . . . . . . 8 ((∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿𝑦𝐾) → ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)
113104, 112sylan 487 . . . . . . 7 ((𝜑𝑦𝐾) → ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)
114 eqid 2610 . . . . . . 7 (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
115113, 114fmptd 6292 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾𝐿)
116 tsmsxp.l . . . . . . 7 (𝜑𝐿𝐽)
117116, 9elmapd 7758 . . . . . 6 (𝜑 → ((𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾) ↔ (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾𝐿))
118115, 117mpbird 246 . . . . 5 (𝜑 → (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾))
119 tsmsxp.6 . . . . 5 (𝜑 → ∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇)
120 oveq2 6557 . . . . . . 7 (𝑔 = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → (𝐺 Σg 𝑔) = (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
121120eleq1d 2672 . . . . . 6 (𝑔 = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → ((𝐺 Σg 𝑔) ∈ 𝑇 ↔ (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇))
122121rspcv 3278 . . . . 5 ((𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾) → (∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇))
123118, 119, 122sylc 63 . . . 4 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇)
124103, 123eqeltrrd 2689 . . 3 (𝜑 → ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇)
125 tsmsxp.4 . . 3 (𝜑 → ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈)
126 oveq1 6556 . . . . 5 (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → (𝑐 + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑))
127126eleq1d 2672 . . . 4 (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → ((𝑐 + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈))
128 oveq2 6557 . . . . 5 (𝑑 = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))))
129128eleq1d 2672 . . . 4 (𝑑 = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → (((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈))
130127, 129rspc2va 3294 . . 3 ((((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆 ∧ ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇) ∧ ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)
13138, 124, 125, 130syl21anc 1317 . 2 (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)
13237, 131eqeltrrd 2689 1 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125  cmpt 4643   × cxp 5036  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑚 cmap 7744  Fincfn 7841  Basecbs 15695  +gcplusg 15768  TopOpenctopn 15905  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Grpcgrp 17245  -gcsg 17247  CMndccmn 18016  Abelcabl 18017  TopGrpctgp 21685   tsums ctsu 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-tgp 21687
This theorem is referenced by:  tsmsxp  21768
  Copyright terms: Public domain W3C validator