MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trint0 Structured version   Visualization version   GIF version

Theorem trint0 4698
Description: Any nonempty transitive class includes its intersection. Exercise 2 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
trint0 ((Tr 𝐴𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem trint0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 3890 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 intss1 4427 . . . . 5 (𝑥𝐴 𝐴𝑥)
3 trss 4689 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
43com12 32 . . . . 5 (𝑥𝐴 → (Tr 𝐴𝑥𝐴))
5 sstr2 3575 . . . . 5 ( 𝐴𝑥 → (𝑥𝐴 𝐴𝐴))
62, 4, 5sylsyld 59 . . . 4 (𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
76exlimiv 1845 . . 3 (∃𝑥 𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
81, 7sylbi 206 . 2 (𝐴 ≠ ∅ → (Tr 𝐴 𝐴𝐴))
98impcom 445 1 ((Tr 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wex 1695  wcel 1977  wne 2780  wss 3540  c0 3874   cint 4410  Tr wtr 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-uni 4373  df-int 4411  df-tr 4681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator