MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgclb Structured version   Visualization version   GIF version

Theorem tgclb 20585
Description: The property tgcl 20584 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)

Proof of Theorem tgclb
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 20584 . 2 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
2 0opn 20534 . . . . . . . . . 10 ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵))
32elfvexd 6132 . . . . . . . . 9 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V)
4 bastg 20581 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵))
53, 4syl 17 . . . . . . . 8 ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵))
65sselda 3568 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
75sselda 3568 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑦𝐵) → 𝑦 ∈ (topGen‘𝐵))
86, 7anim12dan 878 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)))
9 inopn 20529 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
1093expb 1258 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥𝑦) ∈ (topGen‘𝐵))
118, 10syldan 486 . . . . 5 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
12 tg2 20580 . . . . . 6 (((𝑥𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1312ralrimiva 2949 . . . . 5 ((𝑥𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1411, 13syl 17 . . . 4 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1514ralrimivva 2954 . . 3 ((topGen‘𝐵) ∈ Top → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
16 isbasis2g 20563 . . . 4 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
173, 16syl 17 . . 3 ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1815, 17mpbird 246 . 2 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases)
191, 18impbii 198 1 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  cfv 5804  topGenctg 15921  Topctop 20517  TopBasesctb 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-topgen 15927  df-top 20521  df-bases 20522
This theorem is referenced by:  bastop2  20609  iocpnfordt  20829  icomnfordt  20830  iooordt  20831  tgcn  20866  tgcnp  20867  2ndcctbss  21068  2ndcomap  21071  dis2ndc  21073  flftg  21610  met2ndci  22137  xrtgioo  22417  topfneec  31520
  Copyright terms: Public domain W3C validator