MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem15 Structured version   Visualization version   GIF version

Theorem tfrlem15 7375
Description: Lemma for transfinite recursion. Without assuming ax-rep 4699, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem15 (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem15
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem9a 7369 . . 3 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
32adantl 481 . 2 ((𝐵 ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) ∈ V)
41tfrlem13 7373 . . . 4 ¬ recs(𝐹) ∈ V
5 simpr 476 . . . . 5 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (recs(𝐹) ↾ 𝐵) ∈ V)
6 resss 5342 . . . . . . . 8 (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹)
76a1i 11 . . . . . . 7 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹))
81tfrlem6 7365 . . . . . . . . 9 Rel recs(𝐹)
9 resdm 5361 . . . . . . . . 9 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
108, 9ax-mp 5 . . . . . . . 8 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
11 ssres2 5345 . . . . . . . 8 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ dom recs(𝐹)) ⊆ (recs(𝐹) ↾ 𝐵))
1210, 11syl5eqssr 3613 . . . . . . 7 (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ⊆ (recs(𝐹) ↾ 𝐵))
137, 12eqssd 3585 . . . . . 6 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
1413eleq1d 2672 . . . . 5 (dom recs(𝐹) ⊆ 𝐵 → ((recs(𝐹) ↾ 𝐵) ∈ V ↔ recs(𝐹) ∈ V))
155, 14syl5ibcom 234 . . . 4 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ∈ V))
164, 15mtoi 189 . . 3 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → ¬ dom recs(𝐹) ⊆ 𝐵)
171tfrlem8 7367 . . . 4 Ord dom recs(𝐹)
18 eloni 5650 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
1918adantr 480 . . . 4 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → Ord 𝐵)
20 ordtri1 5673 . . . . 5 ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (dom recs(𝐹) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ dom recs(𝐹)))
2120con2bid 343 . . . 4 ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵))
2217, 19, 21sylancr 694 . . 3 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵))
2316, 22mpbird 246 . 2 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → 𝐵 ∈ dom recs(𝐹))
243, 23impbida 873 1 (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  wss 3540  dom cdm 5038  cres 5040  Rel wrel 5043  Ord word 5639  Oncon0 5640   Fn wfn 5799  cfv 5804  recscrecs 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-wrecs 7294  df-recs 7355
This theorem is referenced by:  tfrlem16  7376  tfr2b  7379
  Copyright terms: Public domain W3C validator