MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem11 Structured version   Visualization version   GIF version

Theorem tfrlem11 7371
Description: Lemma for transfinite recursion. Compute the value of 𝐶. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem11 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem11
StepHypRef Expression
1 elsuci 5708 . 2 (𝐵 ∈ suc dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)))
2 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
3 tfrlem.3 . . . . . . . . 9 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
42, 3tfrlem10 7370 . . . . . . . 8 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
5 fnfun 5902 . . . . . . . 8 (𝐶 Fn suc dom recs(𝐹) → Fun 𝐶)
64, 5syl 17 . . . . . . 7 (dom recs(𝐹) ∈ On → Fun 𝐶)
7 ssun1 3738 . . . . . . . . 9 recs(𝐹) ⊆ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
87, 3sseqtr4i 3601 . . . . . . . 8 recs(𝐹) ⊆ 𝐶
92tfrlem9 7368 . . . . . . . . 9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
10 funssfv 6119 . . . . . . . . . . . 12 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
11103expa 1257 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
1211adantrl 748 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
13 onelss 5683 . . . . . . . . . . . 12 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹)))
1413imp 444 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → 𝐵 ⊆ dom recs(𝐹))
15 fun2ssres 5845 . . . . . . . . . . . . 13 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
16153expa 1257 . . . . . . . . . . . 12 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
1716fveq2d 6107 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1814, 17sylan2 490 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1912, 18eqeq12d 2625 . . . . . . . . 9 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
209, 19syl5ibr 235 . . . . . . . 8 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
218, 20mpanl2 713 . . . . . . 7 ((Fun 𝐶 ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
226, 21sylan 487 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
2322exp32 629 . . . . 5 (dom recs(𝐹) ∈ On → (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))))
2423pm2.43i 50 . . . 4 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))))
2524pm2.43d 51 . . 3 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
26 opex 4859 . . . . . . . . 9 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ V
2726snid 4155 . . . . . . . 8 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨𝐵, (𝐹‘(𝐶𝐵))⟩}
28 opeq1 4340 . . . . . . . . . . 11 (𝐵 = dom recs(𝐹) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
2928adantl 481 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
30 eqimss 3620 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹))
318, 15mp3an2 1404 . . . . . . . . . . . . . 14 ((Fun 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
326, 30, 31syl2an 493 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
33 reseq2 5312 . . . . . . . . . . . . . . 15 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = (recs(𝐹) ↾ dom recs(𝐹)))
342tfrlem6 7365 . . . . . . . . . . . . . . . 16 Rel recs(𝐹)
35 resdm 5361 . . . . . . . . . . . . . . . 16 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
3634, 35ax-mp 5 . . . . . . . . . . . . . . 15 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
3733, 36syl6eq 2660 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3837adantl 481 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3932, 38eqtrd 2644 . . . . . . . . . . . 12 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = recs(𝐹))
4039fveq2d 6107 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘recs(𝐹)))
4140opeq2d 4347 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4229, 41eqtrd 2644 . . . . . . . . 9 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4342sneqd 4137 . . . . . . . 8 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → {⟨𝐵, (𝐹‘(𝐶𝐵))⟩} = {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4427, 43syl5eleq 2694 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
45 elun2 3743 . . . . . . 7 (⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4644, 45syl 17 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4746, 3syl6eleqr 2699 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶)
484adantr 480 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐶 Fn suc dom recs(𝐹))
49 simpr 476 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 = dom recs(𝐹))
50 sucidg 5720 . . . . . . . 8 (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹))
5150adantr 480 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → dom recs(𝐹) ∈ suc dom recs(𝐹))
5249, 51eqeltrd 2688 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 ∈ suc dom recs(𝐹))
53 fnopfvb 6147 . . . . . 6 ((𝐶 Fn suc dom recs(𝐹) ∧ 𝐵 ∈ suc dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
5448, 52, 53syl2anc 691 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
5547, 54mpbird 246 . . . 4 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))
5655ex 449 . . 3 (dom recs(𝐹) ∈ On → (𝐵 = dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
5725, 56jaod 394 . 2 (dom recs(𝐹) ∈ On → ((𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
581, 57syl5 33 1 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cun 3538  wss 3540  {csn 4125  cop 4131  dom cdm 5038  cres 5040  Rel wrel 5043  Oncon0 5640  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  cfv 5804  recscrecs 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-wrecs 7294  df-recs 7355
This theorem is referenced by:  tfrlem12  7372
  Copyright terms: Public domain W3C validator