MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmopn Structured version   Visualization version   GIF version

Theorem stdbdmopn 22133
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
stdbdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem stdbdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 11716 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 761 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 1058 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
42, 3ifcld 4081 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*)
5 rpre 11715 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
65ad2antll 761 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
7 rpgt0 11720 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
87ad2antll 761 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
9 simpl3 1059 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
10 breq2 4587 . . . . . . . . 9 (𝑟 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑟 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
11 breq2 4587 . . . . . . . . 9 (𝑅 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑅 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
1210, 11ifboth 4074 . . . . . . . 8 ((0 < 𝑟 ∧ 0 < 𝑅) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
138, 9, 12syl2anc 691 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
14 0xr 9965 . . . . . . . 8 0 ∈ ℝ*
15 xrltle 11858 . . . . . . . 8 ((0 ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1614, 4, 15sylancr 694 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1713, 16mpd 15 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅))
18 xrmin1 11882 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
192, 3, 18syl2anc 691 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
20 xrrege0 11879 . . . . . 6 (((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ if(𝑟𝑅, 𝑟, 𝑅) ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
214, 6, 17, 19, 20syl22anc 1319 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
2221, 13elrpd 11745 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+)
23 simprl 790 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
24 xrmin2 11883 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
252, 3, 24syl2anc 691 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
2623, 4, 253jca 1235 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅))
27 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2827stdbdbl 22132 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
2926, 28syldan 486 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
3029eqcomd 2616 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
31 breq1 4586 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑠𝑟 ↔ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟))
32 oveq2 6557 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
33 oveq2 6557 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
3432, 33eqeq12d 2625 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅))))
3531, 34anbi12d 743 . . . . 5 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))))
3635rspcev 3282 . . . 4 ((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+ ∧ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3722, 19, 30, 36syl12anc 1316 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3837ralrimivva 2954 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
39 simp1 1054 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
4027stdbdxmet 22130 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
41 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
42 eqid 2610 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4341, 42metequiv2 22125 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4439, 40, 43syl2anc 691 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4538, 44mpd 15 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  0cc0 9815  *cxr 9952   < clt 9953  cle 9954  +crp 11708  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-bases 20522
This theorem is referenced by:  mopnex  22134  xlebnum  22572
  Copyright terms: Public domain W3C validator