Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssymdifcl Structured version   Visualization version   GIF version

Theorem sssymdifcl 36896
Description: The class of all subsets of a class is closed under symmetric difference. (Contributed by Richard Penner, 3-Jan-2020.)
Hypothesis
Ref Expression
ssficl.a 𝐴 = {𝑧𝑧𝐵}
Assertion
Ref Expression
sssymdifcl 𝑥𝐴𝑦𝐴 ((𝑥𝑦) ∪ (𝑦𝑥)) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem sssymdifcl
StepHypRef Expression
1 ssficl.a . 2 𝐴 = {𝑧𝑧𝐵}
2 vex 3176 . . . 4 𝑥 ∈ V
3 difexg 4735 . . . 4 (𝑥 ∈ V → (𝑥𝑦) ∈ V)
42, 3ax-mp 5 . . 3 (𝑥𝑦) ∈ V
5 vex 3176 . . . 4 𝑦 ∈ V
6 difexg 4735 . . . 4 (𝑦 ∈ V → (𝑦𝑥) ∈ V)
75, 6ax-mp 5 . . 3 (𝑦𝑥) ∈ V
84, 7unex 6854 . 2 ((𝑥𝑦) ∪ (𝑦𝑥)) ∈ V
9 sseq1 3589 . 2 (𝑧 = ((𝑥𝑦) ∪ (𝑦𝑥)) → (𝑧𝐵 ↔ ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵))
10 sseq1 3589 . 2 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
11 sseq1 3589 . 2 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
12 ssdifss 3703 . . 3 (𝑥𝐵 → (𝑥𝑦) ⊆ 𝐵)
13 ssdifss 3703 . . 3 (𝑦𝐵 → (𝑦𝑥) ⊆ 𝐵)
14 unss 3749 . . . 4 (((𝑥𝑦) ⊆ 𝐵 ∧ (𝑦𝑥) ⊆ 𝐵) ↔ ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵)
1514biimpi 205 . . 3 (((𝑥𝑦) ⊆ 𝐵 ∧ (𝑦𝑥) ⊆ 𝐵) → ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵)
1612, 13, 15syl2an 493 . 2 ((𝑥𝐵𝑦𝐵) → ((𝑥𝑦) ∪ (𝑦𝑥)) ⊆ 𝐵)
171, 8, 9, 10, 11, 16cllem0 36890 1 𝑥𝐴𝑦𝐴 ((𝑥𝑦) ∪ (𝑦𝑥)) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  cdif 3537  cun 3538  wss 3540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126  df-pr 4128  df-uni 4373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator