MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnlim Structured version   Visualization version   GIF version

Theorem ssnlim 6975
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.)
Assertion
Ref Expression
ssnlim ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem ssnlim
StepHypRef Expression
1 limom 6972 . . . 4 Lim ω
2 ssel 3562 . . . . 5 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥}))
3 limeq 5652 . . . . . . . 8 (𝑥 = ω → (Lim 𝑥 ↔ Lim ω))
43notbid 307 . . . . . . 7 (𝑥 = ω → (¬ Lim 𝑥 ↔ ¬ Lim ω))
54elrab 3331 . . . . . 6 (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ∈ On ∧ ¬ Lim ω))
65simprbi 479 . . . . 5 (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ Lim ω)
72, 6syl6 34 . . . 4 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ¬ Lim ω))
81, 7mt2i 131 . . 3 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ ω ∈ 𝐴)
98adantl 481 . 2 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → ¬ ω ∈ 𝐴)
10 ordom 6966 . . . 4 Ord ω
11 ordtri1 5673 . . . 4 ((Ord 𝐴 ∧ Ord ω) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
1210, 11mpan2 703 . . 3 (Ord 𝐴 → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
1312adantr 480 . 2 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
149, 13mpbird 246 1 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  wss 3540  Ord word 5639  Oncon0 5640  Lim wlim 5641  ωcom 6957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator