Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rnbnd Structured version   Visualization version   GIF version

Theorem sge0rnbnd 39286
Description: The range used in the definition of Σ^ is bounded, when the whole sum is a real number. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0rnbnd.x (𝜑𝑋𝑉)
sge0rnbnd.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0rnbnd.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0rnbnd (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
Distinct variable groups:   𝑤,𝐹,𝑥,𝑧   𝑦,𝐹,𝑥,𝑧   𝑧,𝑋   𝜑,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑥,𝑦,𝑤)

Proof of Theorem sge0rnbnd
StepHypRef Expression
1 sge0rnbnd.re . 2 (𝜑 → (Σ^𝐹) ∈ ℝ)
2 simpl 472 . . . 4 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝜑)
3 vex 3176 . . . . . . 7 𝑤 ∈ V
4 eqid 2610 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
54elrnmpt 5293 . . . . . . 7 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
63, 5ax-mp 5 . . . . . 6 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
76biimpi 205 . . . . 5 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
87adantl 481 . . . 4 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
9 simp3 1056 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 = Σ𝑦𝑥 (𝐹𝑦))
10 sge0rnbnd.x . . . . . . . . . 10 (𝜑𝑋𝑉)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
12 sge0rnbnd.f . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶(0[,]+∞))
1312adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
1410, 12, 1sge0rern 39281 . . . . . . . . . . 11 (𝜑 → ¬ +∞ ∈ ran 𝐹)
1514adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈ ran 𝐹)
1613, 15fge0iccico 39263 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
17 elpwinss 38241 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1817adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
19 elinel2 3762 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
2019adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
2111, 16, 18, 20fsumlesge0 39270 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (Σ^𝐹))
22213adant3 1074 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (Σ^𝐹))
239, 22eqbrtrd 4605 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 ≤ (Σ^𝐹))
24233exp 1256 . . . . 5 (𝜑 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹))))
2524rexlimdv 3012 . . . 4 (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹)))
262, 8, 25sylc 63 . . 3 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑤 ≤ (Σ^𝐹))
2726ralrimiva 2949 . 2 (𝜑 → ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤 ≤ (Σ^𝐹))
28 breq2 4587 . . . 4 (𝑧 = (Σ^𝐹) → (𝑤𝑧𝑤 ≤ (Σ^𝐹)))
2928ralbidv 2969 . . 3 (𝑧 = (Σ^𝐹) → (∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧 ↔ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤 ≤ (Σ^𝐹)))
3029rspcev 3282 . 2 (((Σ^𝐹) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤 ≤ (Σ^𝐹)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
311, 27, 30syl2anc 691 1 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cr 9814  0cc0 9815  +∞cpnf 9950  cle 9954  [,]cicc 12049  Σcsu 14264  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  sge0ltfirp  39293
  Copyright terms: Public domain W3C validator