MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid2 Structured version   Visualization version   GIF version

Theorem seqid2 12709
Description: The last few terms of a sequence that ends with all zeroes (or whatever the identity 𝑍 is for operation +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqid2.1 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)
seqid2.2 (𝜑𝐾 ∈ (ℤ𝑀))
seqid2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seqid2.4 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)
seqid2.5 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝑆   𝑥, +   𝑥,𝑍

Proof of Theorem seqid2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqid2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 12220 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2676 . . . . . 6 (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 6103 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝐾))
65eqeq2d 2620 . . . . . 6 (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)))
74, 6imbi12d 333 . . . . 5 (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))))
87imbi2d 329 . . . 4 (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)))))
9 eleq1 2676 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁)))
10 fveq2 6103 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
1110eqeq2d 2620 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)))
129, 11imbi12d 333 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))))
1312imbi2d 329 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)))))
14 eleq1 2676 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁)))
15 fveq2 6103 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
1615eqeq2d 2620 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))
1714, 16imbi12d 333 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
1817imbi2d 329 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
19 eleq1 2676 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
20 fveq2 6103 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
2120eqeq2d 2620 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))
2219, 21imbi12d 333 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))))
2322imbi2d 329 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))))
24 eqidd 2611 . . . . 5 (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))
25242a1i 12 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))))
26 peano2fzr 12225 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁))
2726adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁))
2827expr 641 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁)))
2928imim1d 80 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))))
30 oveq1 6556 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
31 eluzp1p1 11589 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝐾) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
3231ad2antrl 760 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
33 elfzuz3 12210 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
3433ad2antll 761 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
35 elfzuzb 12207 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))))
3632, 34, 35sylanbrc 695 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁))
37 seqid2.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)
3837ralrimiva 2949 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑥) = 𝑍)
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑥) = 𝑍)
40 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
4140eqeq1d 2612 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) = 𝑍 ↔ (𝐹‘(𝑛 + 1)) = 𝑍))
4241rspcv 3278 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) → (∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑥) = 𝑍 → (𝐹‘(𝑛 + 1)) = 𝑍))
4336, 39, 42sylc 63 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = 𝑍)
4443oveq2d 6565 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍))
45 seqid2.4 . . . . . . . . . . . . . 14 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)
46 seqid2.1 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)
4746ralrimiva 2949 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑥)
48 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍))
49 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → 𝑥 = (seq𝑀( + , 𝐹)‘𝐾))
5048, 49eqeq12d 2625 . . . . . . . . . . . . . . 15 (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → ((𝑥 + 𝑍) = 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾)))
5150rspcv 3278 . . . . . . . . . . . . . 14 ((seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆 → (∀𝑥𝑆 (𝑥 + 𝑍) = 𝑥 → ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾)))
5245, 47, 51sylc 63 . . . . . . . . . . . . 13 (𝜑 → ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾))
5352adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾))
5444, 53eqtr2d 2645 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))))
55 simprl 790 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ𝐾))
56 seqid2.2 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ𝑀))
5756adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ𝑀))
58 uztrn 11580 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
5955, 57, 58syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ𝑀))
60 seqp1 12678 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6159, 60syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6254, 61eqeq12d 2625 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
6330, 62syl5ibr 235 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))
6463expr 641 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
6564a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
6629, 65syld 46 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
6766expcom 450 . . . . 5 (𝑛 ∈ (ℤ𝐾) → (𝜑 → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
6867a2d 29 . . . 4 (𝑛 ∈ (ℤ𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
698, 13, 18, 23, 25, 68uzind4 11622 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))))
701, 69mpcom 37 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))
713, 70mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664
This theorem is referenced by:  seqcoll  13105  seqcoll2  13106  fsumcvg  14290  fprodcvg  14499  ovolicc1  23091  lgsdilem2  24858
  Copyright terms: Public domain W3C validator