MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Structured version   Visualization version   GIF version

Theorem scottex 8631
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scottex
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4718 . . . 4 ∅ ∈ V
2 eleq1 2676 . . . 4 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 247 . . 3 (𝐴 = ∅ → 𝐴 ∈ V)
4 rabexg 4739 . . 3 (𝐴 ∈ V → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
53, 4syl 17 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
6 neq0 3889 . . 3 𝐴 = ∅ ↔ ∃𝑦 𝑦𝐴)
7 nfra1 2925 . . . . . 6 𝑦𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)
8 nfcv 2751 . . . . . 6 𝑦𝐴
97, 8nfrab 3100 . . . . 5 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
109nfel1 2765 . . . 4 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
11 rsp 2913 . . . . . . . 8 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1211com12 32 . . . . . . 7 (𝑦𝐴 → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1312ralrimivw 2950 . . . . . 6 (𝑦𝐴 → ∀𝑥𝐴 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
14 ss2rab 3641 . . . . . 6 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ ∀𝑥𝐴 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1513, 14sylibr 223 . . . . 5 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)})
16 rankon 8541 . . . . . . . 8 (rank‘𝑦) ∈ On
17 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (rank‘𝑥) = (rank‘𝑤))
1817sseq1d 3595 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
1918elrab 3331 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝑤𝐴 ∧ (rank‘𝑤) ⊆ (rank‘𝑦)))
2019simprbi 479 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → (rank‘𝑤) ⊆ (rank‘𝑦))
2120rgen 2906 . . . . . . . 8 𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)
22 sseq2 3590 . . . . . . . . . 10 (𝑧 = (rank‘𝑦) → ((rank‘𝑤) ⊆ 𝑧 ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
2322ralbidv 2969 . . . . . . . . 9 (𝑧 = (rank‘𝑦) → (∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 ↔ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)))
2423rspcev 3282 . . . . . . . 8 (((rank‘𝑦) ∈ On ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)) → ∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧)
2516, 21, 24mp2an 704 . . . . . . 7 𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧
26 bndrank 8587 . . . . . . 7 (∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 → {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2725, 26ax-mp 5 . . . . . 6 {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
2827ssex 4730 . . . . 5 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2915, 28syl 17 . . . 4 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
3010, 29exlimi 2073 . . 3 (∃𝑦 𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
316, 30sylbi 206 . 2 𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
325, 31pm2.61i 175 1 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  Oncon0 5640  cfv 5804  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  scottexs  8633  cplem2  8636  kardex  8640  scottexf  33146
  Copyright terms: Public domain W3C validator