MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfmlem Structured version   Visualization version   GIF version

Theorem rnelfmlem 21566
Description: Lemma for rnelfm 21567. (Contributed by Jeff Hankins, 14-Nov-2009.)
Assertion
Ref Expression
rnelfmlem (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑋   𝑥,𝑌

Proof of Theorem rnelfmlem
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1059 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
2 cnvimass 5404 . . . . . . . 8 (𝐹𝑥) ⊆ dom 𝐹
3 fdm 5964 . . . . . . . 8 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
42, 3syl5sseq 3616 . . . . . . 7 (𝐹:𝑌𝑋 → (𝐹𝑥) ⊆ 𝑌)
51, 4syl 17 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ⊆ 𝑌)
6 simpl1 1057 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
7 elpw2g 4754 . . . . . . 7 (𝑌𝐴 → ((𝐹𝑥) ∈ 𝒫 𝑌 ↔ (𝐹𝑥) ⊆ 𝑌))
86, 7syl 17 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝐹𝑥) ∈ 𝒫 𝑌 ↔ (𝐹𝑥) ⊆ 𝑌))
95, 8mpbird 246 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
109adantr 480 . . . 4 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
11 eqid 2610 . . . 4 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
1210, 11fmptd 6292 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑥𝐿 ↦ (𝐹𝑥)):𝐿⟶𝒫 𝑌)
13 frn 5966 . . 3 ((𝑥𝐿 ↦ (𝐹𝑥)):𝐿⟶𝒫 𝑌 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
1412, 13syl 17 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
15 filtop 21469 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
16153ad2ant2 1076 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
1716adantr 480 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
18 fimacnv 6255 . . . . . . . . 9 (𝐹:𝑌𝑋 → (𝐹𝑋) = 𝑌)
1918eqcomd 2616 . . . . . . . 8 (𝐹:𝑌𝑋𝑌 = (𝐹𝑋))
20193ad2ant3 1077 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌 = (𝐹𝑋))
2120adantr 480 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 = (𝐹𝑋))
22 imaeq2 5381 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2322eqeq2d 2620 . . . . . . 7 (𝑥 = 𝑋 → (𝑌 = (𝐹𝑥) ↔ 𝑌 = (𝐹𝑋)))
2423rspcev 3282 . . . . . 6 ((𝑋𝐿𝑌 = (𝐹𝑋)) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
2517, 21, 24syl2anc 691 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
2611elrnmpt 5293 . . . . . . 7 (𝑌𝐴 → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
27263ad2ant1 1075 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2827adantr 480 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2925, 28mpbird 246 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
30 ne0i 3880 . . . 4 (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅)
3129, 30syl 17 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅)
32 0nelfil 21463 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
33323ad2ant2 1076 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → ¬ ∅ ∈ 𝐿)
3433adantr 480 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ 𝐿)
35 0ex 4718 . . . . . . 7 ∅ ∈ V
3611elrnmpt 5293 . . . . . . 7 (∅ ∈ V → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥)))
3735, 36ax-mp 5 . . . . . 6 (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥))
38 ffn 5958 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
39 fvelrnb 6153 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
4038, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
41403ad2ant3 1077 . . . . . . . . . . . . . . . 16 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
4241ad2antrr 758 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
43 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑥𝑦𝑥))
4443biimparc 503 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥 ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) ∈ 𝑥)
4544ad2ant2l 778 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐿𝑦𝑥) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
4645adantll 746 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
47 ffun 5961 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝑌𝑋 → Fun 𝐹)
48473ad2ant3 1077 . . . . . . . . . . . . . . . . . . . 20 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
4948ad3antrrr 762 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → Fun 𝐹)
503eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑌𝑋 → (𝑧 ∈ dom 𝐹𝑧𝑌))
5150biimpar 501 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑌𝑋𝑧𝑌) → 𝑧 ∈ dom 𝐹)
52513ad2antl3 1218 . . . . . . . . . . . . . . . . . . . . 21 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
5352adantlr 747 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
5453ad2ant2r 779 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ dom 𝐹)
55 fvimacnv 6240 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5649, 54, 55syl2anc 691 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5746, 56mpbid 221 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ (𝐹𝑥))
58 n0i 3879 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐹𝑥) → ¬ (𝐹𝑥) = ∅)
59 eqcom 2617 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ∅ ↔ ∅ = (𝐹𝑥))
6058, 59sylnib 317 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐹𝑥) → ¬ ∅ = (𝐹𝑥))
6157, 60syl 17 . . . . . . . . . . . . . . . 16 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ¬ ∅ = (𝐹𝑥))
6261rexlimdvaa 3014 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∃𝑧𝑌 (𝐹𝑧) = 𝑦 → ¬ ∅ = (𝐹𝑥)))
6342, 62sylbid 229 . . . . . . . . . . . . . 14 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 → ¬ ∅ = (𝐹𝑥)))
6463con2d 128 . . . . . . . . . . . . 13 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹))
6564expr 641 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑦𝑥 → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹)))
6665com23 84 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (∅ = (𝐹𝑥) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹)))
6766impr 647 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
6867alrimiv 1842 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
69 imnan 437 . . . . . . . . . . . 12 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ (𝑦𝑥𝑦 ∈ ran 𝐹))
70 elin 3758 . . . . . . . . . . . 12 (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦𝑥𝑦 ∈ ran 𝐹))
7169, 70xchbinxr 324 . . . . . . . . . . 11 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
7271albii 1737 . . . . . . . . . 10 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
73 eq0 3888 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
74 eqcom 2617 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∅ = (𝑥 ∩ ran 𝐹))
7572, 73, 743bitr2i 287 . . . . . . . . 9 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∅ = (𝑥 ∩ ran 𝐹))
7668, 75sylib 207 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ = (𝑥 ∩ ran 𝐹))
77 simpll2 1094 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝐿 ∈ (Fil‘𝑋))
78 simprl 790 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝑥𝐿)
79 simplr 788 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ran 𝐹𝐿)
80 filin 21468 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
8177, 78, 79, 80syl3anc 1318 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
8276, 81eqeltrd 2688 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ ∈ 𝐿)
8382rexlimdvaa 3014 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 ∅ = (𝐹𝑥) → ∅ ∈ 𝐿))
8437, 83syl5bi 231 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ∅ ∈ 𝐿))
8534, 84mtod 188 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
86 df-nel 2783 . . . 4 (∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
8785, 86sylibr 223 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)))
88 vex 3176 . . . . . . . . 9 𝑟 ∈ V
8911elrnmpt 5293 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥)))
9088, 89ax-mp 5 . . . . . . . 8 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥))
91 imaeq2 5381 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
9291eqeq2d 2620 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑟 = (𝐹𝑥) ↔ 𝑟 = (𝐹𝑢)))
9392cbvrexv 3148 . . . . . . . 8 (∃𝑥𝐿 𝑟 = (𝐹𝑥) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
9490, 93bitri 263 . . . . . . 7 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
95 vex 3176 . . . . . . . . 9 𝑠 ∈ V
9611elrnmpt 5293 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
9795, 96ax-mp 5 . . . . . . . 8 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
98 imaeq2 5381 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
9998eqeq2d 2620 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑣)))
10099cbvrexv 3148 . . . . . . . 8 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
10197, 100bitri 263 . . . . . . 7 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
10294, 101anbi12i 729 . . . . . 6 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
103 reeanv 3086 . . . . . 6 (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
104102, 103bitr4i 266 . . . . 5 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))
105 filin 21468 . . . . . . . . . . . . . 14 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑢𝐿𝑣𝐿) → (𝑢𝑣) ∈ 𝐿)
1061053expb 1258 . . . . . . . . . . . . 13 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
107106adantlr 747 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
108 eqidd 2611 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣)))
109 imaeq2 5381 . . . . . . . . . . . . . 14 (𝑥 = (𝑢𝑣) → (𝐹𝑥) = (𝐹 “ (𝑢𝑣)))
110109eqeq2d 2620 . . . . . . . . . . . . 13 (𝑥 = (𝑢𝑣) → ((𝐹 “ (𝑢𝑣)) = (𝐹𝑥) ↔ (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣))))
111110rspcev 3282 . . . . . . . . . . . 12 (((𝑢𝑣) ∈ 𝐿 ∧ (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
112107, 108, 111syl2anc 691 . . . . . . . . . . 11 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
1131123adantl1 1210 . . . . . . . . . 10 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
114113ad2ant2r 779 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
115 simpll1 1093 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑌𝐴)
116 cnvimass 5404 . . . . . . . . . . . . . 14 (𝐹 “ (𝑢𝑣)) ⊆ dom 𝐹
117116, 3syl5sseq 3616 . . . . . . . . . . . . 13 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
1181173ad2ant3 1077 . . . . . . . . . . . 12 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
119118ad2antrr 758 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
120115, 119ssexd 4733 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ V)
12111elrnmpt 5293 . . . . . . . . . 10 ((𝐹 “ (𝑢𝑣)) ∈ V → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
122120, 121syl 17 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
123114, 122mpbird 246 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
124 simprrl 800 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑟 = (𝐹𝑢))
125 simprrr 801 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑠 = (𝐹𝑣))
126124, 125ineq12d 3777 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = ((𝐹𝑢) ∩ (𝐹𝑣)))
127 funcnvcnv 5870 . . . . . . . . . . . . 13 (Fun 𝐹 → Fun 𝐹)
128 imain 5888 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
12947, 127, 1283syl 18 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
1301293ad2ant3 1077 . . . . . . . . . . 11 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
131130ad2antrr 758 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
132126, 131eqtr4d 2647 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = (𝐹 “ (𝑢𝑣)))
133 eqimss2 3621 . . . . . . . . 9 ((𝑟𝑠) = (𝐹 “ (𝑢𝑣)) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
134132, 133syl 17 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
135 sseq1 3589 . . . . . . . . 9 (𝑡 = (𝐹 “ (𝑢𝑣)) → (𝑡 ⊆ (𝑟𝑠) ↔ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)))
136135rspcev 3282 . . . . . . . 8 (((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
137123, 134, 136syl2anc 691 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
138137exp32 629 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑢𝐿𝑣𝐿) → ((𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))))
139138rexlimdvv 3019 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
140104, 139syl5bi 231 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
141140ralrimivv 2953 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
14231, 87, 1413jca 1235 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
143 isfbas2 21449 . . 3 (𝑌𝐴 → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
1446, 143syl 17 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
14514, 142, 144mpbir2and 959 1 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  fBascfbas 19555  Filcfil 21459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-fbas 19564  df-fil 21460
This theorem is referenced by:  rnelfm  21567  fmfnfm  21572
  Copyright terms: Public domain W3C validator