Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Structured version   Visualization version   GIF version

Theorem rmxycomplete 36500
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝑛,𝑌

Proof of Theorem rmxycomplete
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmspecnonsq 36490 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
213ad2ant1 1075 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3 pellfund14b 36481 . . 3 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
42, 3syl 17 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
5 nn0re 11178 . . . . . 6 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
653ad2ant2 1076 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℝ)
7 rmspecpos 36499 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
87rpsqrtcld 13998 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
98rpred 11748 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
1093ad2ant1 1075 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
11 zre 11258 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
12113ad2ant3 1077 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℝ)
1310, 12remulcld 9949 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · 𝑌) ∈ ℝ)
146, 13readdcld 9948 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ)
1514biantrurd 528 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
16 simpl2 1058 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑋 ∈ ℕ0)
17 simpl3 1059 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → 𝑌 ∈ ℤ)
18 eqidd 2611 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
19 simpr 476 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
20 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)))
2120eqeq2d 2620 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦))))
22 oveq1 6556 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
2322oveq1d 6564 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
2423eqeq1d 2612 . . . . . . . 8 (𝑥 = 𝑋 → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
2521, 24anbi12d 743 . . . . . . 7 (𝑥 = 𝑋 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
26 oveq2 6557 . . . . . . . . . 10 (𝑦 = 𝑌 → ((√‘((𝐴↑2) − 1)) · 𝑦) = ((√‘((𝐴↑2) − 1)) · 𝑌))
2726oveq2d 6565 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)))
2827eqeq2d 2620 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌))))
29 oveq1 6556 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦↑2) = (𝑌↑2))
3029oveq2d 6565 . . . . . . . . . 10 (𝑦 = 𝑌 → (((𝐴↑2) − 1) · (𝑦↑2)) = (((𝐴↑2) − 1) · (𝑌↑2)))
3130oveq2d 6565 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
3231eqeq1d 2612 . . . . . . . 8 (𝑦 = 𝑌 → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
3328, 32anbi12d 743 . . . . . . 7 (𝑦 = 𝑌 → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)))
3425, 33rspc2ev 3295 . . . . . 6 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ ∧ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3516, 17, 18, 19, 34syl112anc 1322 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))
3635ex 449 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 → ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
37 rmspecsqrtnq 36488 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
38373ad2ant1 1075 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3938adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
40 nn0ssq 11672 . . . . . . . . . . 11 0 ⊆ ℚ
41 simp2 1055 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℕ0)
4240, 41sseldi 3566 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑋 ∈ ℚ)
4342adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑋 ∈ ℚ)
44 zq 11670 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℚ)
45443ad2ant3 1077 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → 𝑌 ∈ ℚ)
4645adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑌 ∈ ℚ)
4740sseli 3564 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℚ)
4847ad2antrl 760 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑥 ∈ ℚ)
49 zq 11670 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
5049ad2antll 761 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → 𝑦 ∈ ℚ)
51 qirropth 36491 . . . . . . . . 9 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5239, 43, 46, 48, 50, 51syl122anc 1327 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ↔ (𝑋 = 𝑥𝑌 = 𝑦)))
5352biimpd 218 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) → (𝑋 = 𝑥𝑌 = 𝑦)))
5453anim1d 586 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
55 oveq1 6556 . . . . . . . . . 10 (𝑋 = 𝑥 → (𝑋↑2) = (𝑥↑2))
56 oveq1 6556 . . . . . . . . . . 11 (𝑌 = 𝑦 → (𝑌↑2) = (𝑦↑2))
5756oveq2d 6565 . . . . . . . . . 10 (𝑌 = 𝑦 → (((𝐴↑2) − 1) · (𝑌↑2)) = (((𝐴↑2) − 1) · (𝑦↑2)))
5855, 57oveqan12d 6568 . . . . . . . . 9 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))))
5958eqcomd 2616 . . . . . . . 8 ((𝑋 = 𝑥𝑌 = 𝑦) → ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))))
6059eqeq1d 2612 . . . . . . 7 ((𝑋 = 𝑥𝑌 = 𝑦) → (((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6160biimpa 500 . . . . . 6 (((𝑋 = 𝑥𝑌 = 𝑦) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1)
6254, 61syl6 34 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℤ)) → (((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6362rexlimdvva 3020 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1))
6436, 63impbid 201 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
65 elpell14qr 36431 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
662, 65syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ ℝ ∧ ∃𝑥 ∈ ℕ0𝑦 ∈ ℤ ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = (𝑥 + ((√‘((𝐴↑2) − 1)) · 𝑦)) ∧ ((𝑥↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))))
6715, 64, 663bitr4d 299 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) ∈ (Pell14QR‘((𝐴↑2) − 1))))
6838adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
6942adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ ℚ)
7045adantr 480 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ ℚ)
71 frmx 36496 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
7271a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Xrm :((ℤ‘2) × ℤ)⟶ℕ0)
73 simpl1 1057 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
74 simpr 476 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
7572, 73, 74fovrnd 6704 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℕ0)
7640, 75sseldi 3566 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Xrm 𝑛) ∈ ℚ)
77 zssq 11671 . . . . . 6 ℤ ⊆ ℚ
78 frmy 36497 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7978a1i 11 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → Yrm :((ℤ‘2) × ℤ)⟶ℤ)
8079, 73, 74fovrnd 6704 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℤ)
8177, 80sseldi 3566 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐴 Yrm 𝑛) ∈ ℚ)
82 qirropth 36491 . . . . 5 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ (𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ) ∧ ((𝐴 Xrm 𝑛) ∈ ℚ ∧ (𝐴 Yrm 𝑛) ∈ ℚ)) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
8368, 69, 70, 76, 81, 82syl122anc 1327 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
84 rmxyval 36498 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
85843ad2antl1 1216 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
86 rmspecfund 36492 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
87863ad2ant1 1075 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8887adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
8988oveq1d 6564 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((PellFund‘((𝐴↑2) − 1))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑛))
9085, 89eqtr4d 2647 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) = ((PellFund‘((𝐴↑2) − 1))↑𝑛))
9190eqeq2d 2620 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((𝐴 Xrm 𝑛) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑛))) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9283, 91bitr3d 269 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
9392rexbidva 3031 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛)) ↔ ∃𝑛 ∈ ℤ (𝑋 + ((√‘((𝐴↑2) − 1)) · 𝑌)) = ((PellFund‘((𝐴↑2) − 1))↑𝑛)))
944, 67, 933bitr4d 299 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑌↑2))) = 1 ↔ ∃𝑛 ∈ ℤ (𝑋 = (𝐴 Xrm 𝑛) ∧ 𝑌 = (𝐴 Yrm 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cdif 3537   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cq 11664  cexp 12722  csqrt 13821  NNcsquarenn 36418  Pell14QRcpell14qr 36421  PellFundcpellfund 36422   Xrm crmx 36482   Yrm crmy 36483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485
This theorem is referenced by:  rmxynorm  36501  jm2.27b  36591
  Copyright terms: Public domain W3C validator