MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim Structured version   Visualization version   GIF version

Theorem rlim 14074
Description: Express the predicate: The limit of complex number function 𝐹 is 𝐶, or 𝐹 converges to 𝐶, in the real sense. This means that for any real 𝑥, no matter how small, there always exists a number 𝑦 such that the absolute difference of any number in the function beyond 𝑦 and the limit is less than 𝑥. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
rlim.1 (𝜑𝐹:𝐴⟶ℂ)
rlim.2 (𝜑𝐴 ⊆ ℝ)
rlim.4 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝐵)
Assertion
Ref Expression
rlim (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
Distinct variable groups:   𝑧,𝐴   𝑥,𝑦,𝑧,𝐶   𝑥,𝐹,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem rlim
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimrel 14072 . . . . 5 Rel ⇝𝑟
21brrelex2i 5083 . . . 4 (𝐹𝑟 𝐶𝐶 ∈ V)
32a1i 11 . . 3 (𝜑 → (𝐹𝑟 𝐶𝐶 ∈ V))
4 elex 3185 . . . . 5 (𝐶 ∈ ℂ → 𝐶 ∈ V)
54ad2antrl 760 . . . 4 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V)
65a1i 11 . . 3 (𝜑 → ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))) → 𝐶 ∈ V))
7 rlim.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
8 rlim.2 . . . . 5 (𝜑𝐴 ⊆ ℝ)
9 cnex 9896 . . . . . 6 ℂ ∈ V
10 reex 9906 . . . . . 6 ℝ ∈ V
11 elpm2r 7761 . . . . . 6 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
129, 10, 11mpanl12 714 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
137, 8, 12syl2anc 691 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
14 eleq1 2676 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 ∈ (ℂ ↑pm ℝ) ↔ 𝐹 ∈ (ℂ ↑pm ℝ)))
15 eleq1 2676 . . . . . . . . 9 (𝑤 = 𝐶 → (𝑤 ∈ ℂ ↔ 𝐶 ∈ ℂ))
1614, 15bi2anan9 913 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ)))
17 simpl 472 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑤 = 𝐶) → 𝑓 = 𝐹)
1817dmeqd 5248 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑤 = 𝐶) → dom 𝑓 = dom 𝐹)
19 fveq1 6102 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
20 oveq12 6558 . . . . . . . . . . . . . . 15 (((𝑓𝑧) = (𝐹𝑧) ∧ 𝑤 = 𝐶) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐶))
2119, 20sylan 487 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐶))
2221fveq2d 6107 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑤 = 𝐶) → (abs‘((𝑓𝑧) − 𝑤)) = (abs‘((𝐹𝑧) − 𝐶)))
2322breq1d 4593 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑤 = 𝐶) → ((abs‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
2423imbi2d 329 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑤 = 𝐶) → ((𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2518, 24raleqbidv 3129 . . . . . . . . . 10 ((𝑓 = 𝐹𝑤 = 𝐶) → (∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2625rexbidv 3034 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝐶) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2726ralbidv 2969 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐶) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
2816, 27anbi12d 743 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝐶) → (((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥)) ↔ ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
29 df-rlim 14068 . . . . . . 7 𝑟 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑤 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝑓(𝑦𝑧 → (abs‘((𝑓𝑧) − 𝑤)) < 𝑥))}
3028, 29brabga 4914 . . . . . 6 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹𝑟 𝐶 ↔ ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
31 anass 679 . . . . . 6 (((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ ℂ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
3230, 31syl6bb 275 . . . . 5 ((𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝐶 ∈ V) → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
3332ex 449 . . . 4 (𝐹 ∈ (ℂ ↑pm ℝ) → (𝐶 ∈ V → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))))
3413, 33syl 17 . . 3 (𝜑 → (𝐶 ∈ V → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))))
353, 6, 34pm5.21ndd 368 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
3613biantrurd 528 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))))
37 fdm 5964 . . . . . . . 8 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
387, 37syl 17 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
3938raleqdv 3121 . . . . . 6 (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
40 rlim.4 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝐵)
4140oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = (𝐵𝐶))
4241fveq2d 6107 . . . . . . . . 9 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
4342breq1d 4593 . . . . . . . 8 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
4443imbi2d 329 . . . . . . 7 ((𝜑𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4544ralbidva 2968 . . . . . 6 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4639, 45bitrd 267 . . . . 5 (𝜑 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4746rexbidv 3034 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4847ralbidv 2969 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4948anbi2d 736 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
5035, 36, 493bitr2d 295 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  pm cpm 7745  cc 9813  cr 9814   < clt 9953  cle 9954  cmin 10145  +crp 11708  abscabs 13822  𝑟 crli 14064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-pm 7747  df-rlim 14068
This theorem is referenced by:  rlim2  14075  rlimcl  14082  rlimclim  14125  rlimres  14137  caurcvgr  14252
  Copyright terms: Public domain W3C validator