MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restrcl Structured version   Visualization version   GIF version

Theorem restrcl 20771
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restrcl ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))

Proof of Theorem restrcl
StepHypRef Expression
1 0opn 20534 . . 3 ((𝐽t 𝐴) ∈ Top → ∅ ∈ (𝐽t 𝐴))
2 n0i 3879 . . 3 (∅ ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
31, 2syl 17 . 2 ((𝐽t 𝐴) ∈ Top → ¬ (𝐽t 𝐴) = ∅)
4 restfn 15908 . . . 4 t Fn (V × V)
5 fndm 5904 . . . 4 ( ↾t Fn (V × V) → dom ↾t = (V × V))
64, 5ax-mp 5 . . 3 dom ↾t = (V × V)
76ndmov 6716 . 2 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
83, 7nsyl2 141 1 ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874   × cxp 5036  dom cdm 5038   Fn wfn 5799  (class class class)co 6549  t crest 15904  Topctop 20517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-rest 15906  df-top 20521
This theorem is referenced by:  cnrest2r  20901  imacmp  21010  fiuncmp  21017  concompss  21046  kgeni  21150  kgencmp  21158  kgencmp2  21159
  Copyright terms: Public domain W3C validator