MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni2b Structured version   Visualization version   GIF version

Theorem rankuni2b 8599
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
rankuni2b (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankuni2b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniwf 8565 . . . 4 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
2 rankval3b 8572 . . . 4 ( 𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
31, 2sylbi 206 . . 3 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
4 iuneq1 4470 . . . . . . 7 (𝑦 = 𝐴 𝑥𝑦 (rank‘𝑥) = 𝑥𝐴 (rank‘𝑥))
54eleq1d 2672 . . . . . 6 (𝑦 = 𝐴 → ( 𝑥𝑦 (rank‘𝑥) ∈ On ↔ 𝑥𝐴 (rank‘𝑥) ∈ On))
6 vex 3176 . . . . . . 7 𝑦 ∈ V
7 rankon 8541 . . . . . . . 8 (rank‘𝑥) ∈ On
87rgenw 2908 . . . . . . 7 𝑥𝑦 (rank‘𝑥) ∈ On
9 iunon 7323 . . . . . . 7 ((𝑦 ∈ V ∧ ∀𝑥𝑦 (rank‘𝑥) ∈ On) → 𝑥𝑦 (rank‘𝑥) ∈ On)
106, 8, 9mp2an 704 . . . . . 6 𝑥𝑦 (rank‘𝑥) ∈ On
115, 10vtoclg 3239 . . . . 5 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ∈ On)
12 eluni2 4376 . . . . . . 7 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
13 nfv 1830 . . . . . . . 8 𝑥 𝐴 (𝑅1 “ On)
14 nfiu1 4486 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
1514nfel2 2767 . . . . . . . 8 𝑥(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)
16 r1elssi 8551 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
1716sseld 3567 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (𝑥𝐴𝑥 (𝑅1 “ On)))
18 rankelb 8570 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) → (𝑦𝑥 → (rank‘𝑦) ∈ (rank‘𝑥)))
1917, 18syl6 34 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (𝑦𝑥 → (rank‘𝑦) ∈ (rank‘𝑥))))
20 ssiun2 4499 . . . . . . . . . . 11 (𝑥𝐴 → (rank‘𝑥) ⊆ 𝑥𝐴 (rank‘𝑥))
2120sseld 3567 . . . . . . . . . 10 (𝑥𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2221a1i 11 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))))
2319, 22syldd 70 . . . . . . . 8 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (𝑦𝑥 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))))
2413, 15, 23rexlimd 3008 . . . . . . 7 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦𝑥 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2512, 24syl5bi 231 . . . . . 6 (𝐴 (𝑅1 “ On) → (𝑦 𝐴 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2625ralrimiv 2948 . . . . 5 (𝐴 (𝑅1 “ On) → ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))
27 eleq2 2677 . . . . . . 7 (𝑧 = 𝑥𝐴 (rank‘𝑥) → ((rank‘𝑦) ∈ 𝑧 ↔ (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2827ralbidv 2969 . . . . . 6 (𝑧 = 𝑥𝐴 (rank‘𝑥) → (∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2928elrab 3331 . . . . 5 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ↔ ( 𝑥𝐴 (rank‘𝑥) ∈ On ∧ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
3011, 26, 29sylanbrc 695 . . . 4 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
31 intss1 4427 . . . 4 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} → {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ 𝑥𝐴 (rank‘𝑥))
3230, 31syl 17 . . 3 (𝐴 (𝑅1 “ On) → {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ 𝑥𝐴 (rank‘𝑥))
333, 32eqsstrd 3602 . 2 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) ⊆ 𝑥𝐴 (rank‘𝑥))
341biimpi 205 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
35 elssuni 4403 . . . . 5 (𝑥𝐴𝑥 𝐴)
36 rankssb 8594 . . . . 5 ( 𝐴 (𝑅1 “ On) → (𝑥 𝐴 → (rank‘𝑥) ⊆ (rank‘ 𝐴)))
3734, 35, 36syl2im 39 . . . 4 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ⊆ (rank‘ 𝐴)))
3837ralrimiv 2948 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
39 iunss 4497 . . 3 ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴) ↔ ∀𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
4038, 39sylibr 223 . 2 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
4133, 40eqssd 3585 1 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540   cuni 4372   cint 4410   ciun 4455  cima 5041  Oncon0 5640  cfv 5804  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  rankuni2  8601  rankcf  9478
  Copyright terms: Public domain W3C validator