MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpwi Structured version   Visualization version   GIF version

Theorem rankpwi 8569
Description: The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.)
Assertion
Ref Expression
rankpwi (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))

Proof of Theorem rankpwi
StepHypRef Expression
1 rankidn 8568 . . . 4 (𝐴 (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
2 rankon 8541 . . . . . . 7 (rank‘𝐴) ∈ On
3 r1suc 8516 . . . . . . 7 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
42, 3ax-mp 5 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
54eleq2i 2680 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
6 elpwi 4117 . . . . . 6 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) → 𝒫 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
7 pwidg 4121 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴)
8 ssel 3562 . . . . . 6 (𝒫 𝐴 ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ (𝑅1‘(rank‘𝐴))))
96, 7, 8syl2imc 40 . . . . 5 (𝐴 (𝑅1 “ On) → (𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
105, 9syl5bi 231 . . . 4 (𝐴 (𝑅1 “ On) → (𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
111, 10mtod 188 . . 3 (𝐴 (𝑅1 “ On) → ¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
12 r1rankidb 8550 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
13 sspwb 4844 . . . . . . 7 (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
1412, 13sylib 207 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
1514, 4syl6sseqr 3615 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
16 fvex 6113 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) ∈ V
1716elpw2 4755 . . . . 5 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
1815, 17sylibr 223 . . . 4 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)))
192onsuci 6930 . . . . 5 suc (rank‘𝐴) ∈ On
20 r1suc 8516 . . . . 5 (suc (rank‘𝐴) ∈ On → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)))
2119, 20ax-mp 5 . . . 4 (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))
2218, 21syl6eleqr 2699 . . 3 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))
23 pwwf 8553 . . . 4 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
24 rankr1c 8567 . . . 4 (𝒫 𝐴 (𝑅1 “ On) → (suc (rank‘𝐴) = (rank‘𝒫 𝐴) ↔ (¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))))
2523, 24sylbi 206 . . 3 (𝐴 (𝑅1 “ On) → (suc (rank‘𝐴) = (rank‘𝒫 𝐴) ↔ (¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))))
2611, 22, 25mpbir2and 959 . 2 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = (rank‘𝒫 𝐴))
2726eqcomd 2616 1 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540  𝒫 cpw 4108   cuni 4372  cima 5041  Oncon0 5640  suc csuc 5642  cfv 5804  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  rankpw  8589  r1pw  8591  r1pwcl  8593
  Copyright terms: Public domain W3C validator