MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankopb Structured version   Visualization version   GIF version

Theorem rankopb 8598
Description: The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankopb
StepHypRef Expression
1 dfopg 4338 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21fveq2d 6107 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = (rank‘{{𝐴}, {𝐴, 𝐵}}))
3 snwf 8555 . . . 4 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
43adantr 480 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴} ∈ (𝑅1 “ On))
5 prwf 8557 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴, 𝐵} ∈ (𝑅1 “ On))
6 rankprb 8597 . . 3 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
74, 5, 6syl2anc 691 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, 𝐵}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
8 snsspr1 4285 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
9 ssequn1 3745 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
108, 9mpbi 219 . . . . 5 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
1110fveq2i 6106 . . . 4 (rank‘({𝐴} ∪ {𝐴, 𝐵})) = (rank‘{𝐴, 𝐵})
12 rankunb 8596 . . . . 5 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, 𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
134, 5, 12syl2anc 691 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, 𝐵})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})))
14 rankprb 8597 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1511, 13, 143eqtr3a 2668 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
16 suceq 5707 . . 3 (((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1715, 16syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, 𝐵})) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
182, 7, 173eqtrd 2648 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cun 3538  wss 3540  {csn 4125  {cpr 4127  cop 4131   cuni 4372  cima 5041  Oncon0 5640  suc csuc 5642  cfv 5804  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  rankop  8604
  Copyright terms: Public domain W3C validator