MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpw0 Structured version   Visualization version   GIF version

Theorem pwpw0 4284
Description: Compute the power set of the power set of the empty set. (See pw0 4283 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 4366, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
pwpw0 𝒫 {∅} = {∅, {∅}}

Proof of Theorem pwpw0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss2 3557 . . . . . . . . 9 (𝑥 ⊆ {∅} ↔ ∀𝑦(𝑦𝑥𝑦 ∈ {∅}))
2 velsn 4141 . . . . . . . . . . 11 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
32imbi2i 325 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ {∅}) ↔ (𝑦𝑥𝑦 = ∅))
43albii 1737 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 ∈ {∅}) ↔ ∀𝑦(𝑦𝑥𝑦 = ∅))
51, 4bitri 263 . . . . . . . 8 (𝑥 ⊆ {∅} ↔ ∀𝑦(𝑦𝑥𝑦 = ∅))
6 neq0 3889 . . . . . . . . . 10 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
7 exintr 1810 . . . . . . . . . 10 (∀𝑦(𝑦𝑥𝑦 = ∅) → (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥𝑦 = ∅)))
86, 7syl5bi 231 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 = ∅) → (¬ 𝑥 = ∅ → ∃𝑦(𝑦𝑥𝑦 = ∅)))
9 exancom 1774 . . . . . . . . . . 11 (∃𝑦(𝑦𝑥𝑦 = ∅) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦𝑥))
10 df-clel 2606 . . . . . . . . . . 11 (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦𝑥))
119, 10bitr4i 266 . . . . . . . . . 10 (∃𝑦(𝑦𝑥𝑦 = ∅) ↔ ∅ ∈ 𝑥)
12 snssi 4280 . . . . . . . . . 10 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
1311, 12sylbi 206 . . . . . . . . 9 (∃𝑦(𝑦𝑥𝑦 = ∅) → {∅} ⊆ 𝑥)
148, 13syl6 34 . . . . . . . 8 (∀𝑦(𝑦𝑥𝑦 = ∅) → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥))
155, 14sylbi 206 . . . . . . 7 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥))
1615anc2li 578 . . . . . 6 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → (𝑥 ⊆ {∅} ∧ {∅} ⊆ 𝑥)))
17 eqss 3583 . . . . . 6 (𝑥 = {∅} ↔ (𝑥 ⊆ {∅} ∧ {∅} ⊆ 𝑥))
1816, 17syl6ibr 241 . . . . 5 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → 𝑥 = {∅}))
1918orrd 392 . . . 4 (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))
20 0ss 3924 . . . . . 6 ∅ ⊆ {∅}
21 sseq1 3589 . . . . . 6 (𝑥 = ∅ → (𝑥 ⊆ {∅} ↔ ∅ ⊆ {∅}))
2220, 21mpbiri 247 . . . . 5 (𝑥 = ∅ → 𝑥 ⊆ {∅})
23 eqimss 3620 . . . . 5 (𝑥 = {∅} → 𝑥 ⊆ {∅})
2422, 23jaoi 393 . . . 4 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 ⊆ {∅})
2519, 24impbii 198 . . 3 (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
2625abbii 2726 . 2 {𝑥𝑥 ⊆ {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})}
27 df-pw 4110 . 2 𝒫 {∅} = {𝑥𝑥 ⊆ {∅}}
28 dfpr2 4143 . 2 {∅, {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})}
2926, 27, 283eqtr4i 2642 1 𝒫 {∅} = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  {cpr 4127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128
This theorem is referenced by:  pp0ex  4781  pwcda1  8899  canthp1lem1  9353  rankeq1o  31448  ssoninhaus  31617
  Copyright terms: Public domain W3C validator