MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Structured version   Visualization version   GIF version

Theorem psslinpr 9732
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem psslinpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 9692 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → 𝑥Q)
2 prub 9695 . . . . . . . . . . . . 13 (((𝐵P𝑦𝐵) ∧ 𝑥Q) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
31, 2sylan2 490 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
4 prcdnq 9694 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → (𝑦 <Q 𝑥𝑦𝐴))
54adantl 481 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (𝑦 <Q 𝑥𝑦𝐴))
63, 5syld 46 . . . . . . . . . . 11 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦𝐴))
76exp43 638 . . . . . . . . . 10 (𝐵P → (𝑦𝐵 → (𝐴P → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
87com3r 85 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
98imp 444 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴))))
109imp4a 612 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑦𝐴)))
1110com23 84 . . . . . 6 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑦𝐵𝑦𝐴)))
1211alrimdv 1844 . . . . 5 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
1312exlimdv 1848 . . . 4 ((𝐴P𝐵P) → (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
14 nss 3626 . . . . 5 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
15 sspss 3668 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
1614, 15xchnxbi 321 . . . 4 (¬ (𝐴𝐵𝐴 = 𝐵) ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
17 sspss 3668 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
18 dfss2 3557 . . . . 5 (𝐵𝐴 ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
1917, 18bitr3i 265 . . . 4 ((𝐵𝐴𝐵 = 𝐴) ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
2013, 16, 193imtr4g 284 . . 3 ((𝐴P𝐵P) → (¬ (𝐴𝐵𝐴 = 𝐵) → (𝐵𝐴𝐵 = 𝐴)))
2120orrd 392 . 2 ((𝐴P𝐵P) → ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
22 df-3or 1032 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
23 or32 548 . . 3 (((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵))
24 orordir 552 . . . 4 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
25 eqcom 2617 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
2625orbi2i 540 . . . . 5 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
2726orbi2i 540 . . . 4 (((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
2824, 27bitr4i 266 . . 3 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
2922, 23, 283bitri 285 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
3021, 29sylibr 223 1 ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1030  wal 1473   = wceq 1475  wex 1695  wcel 1977  wss 3540  wpss 3541   class class class wbr 4583  Qcnq 9553   <Q cltq 9559  Pcnp 9560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-mi 9575  df-lti 9576  df-ltpq 9611  df-enq 9612  df-nq 9613  df-ltnq 9619  df-np 9682
This theorem is referenced by:  ltsopr  9733
  Copyright terms: Public domain W3C validator