HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid2i Structured version   Visualization version   GIF version

Theorem polid2i 27398
Description: Generalized polarization identity. Generalization of Exercise 4(a) of [ReedSimon] p. 63. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
polid2.1 𝐴 ∈ ℋ
polid2.2 𝐵 ∈ ℋ
polid2.3 𝐶 ∈ ℋ
polid2.4 𝐷 ∈ ℋ
Assertion
Ref Expression
polid2i (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) / 4)

Proof of Theorem polid2i
StepHypRef Expression
1 4cn 10975 . 2 4 ∈ ℂ
2 polid2.1 . . 3 𝐴 ∈ ℋ
3 polid2.2 . . 3 𝐵 ∈ ℋ
42, 3hicli 27322 . 2 (𝐴 ·ih 𝐵) ∈ ℂ
5 4ne0 10994 . 2 4 ≠ 0
6 2cn 10968 . . . 4 2 ∈ ℂ
7 polid2.3 . . . . . 6 𝐶 ∈ ℋ
8 polid2.4 . . . . . 6 𝐷 ∈ ℋ
97, 8hicli 27322 . . . . 5 (𝐶 ·ih 𝐷) ∈ ℂ
104, 9addcli 9923 . . . 4 ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) ∈ ℂ
114, 9subcli 10236 . . . 4 ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)) ∈ ℂ
126, 10, 11adddii 9929 . . 3 (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))) = ((2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) + (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
13 ppncan 10202 . . . . . . 7 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐶 ·ih 𝐷) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵)))
144, 9, 4, 13mp3an 1416 . . . . . 6 (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵))
1542timesi 11024 . . . . . 6 (2 · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵))
1614, 15eqtr4i 2635 . . . . 5 (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = (2 · (𝐴 ·ih 𝐵))
1716oveq2i 6560 . . . 4 (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))) = (2 · (2 · (𝐴 ·ih 𝐵)))
186, 6, 4mulassi 9928 . . . 4 ((2 · 2) · (𝐴 ·ih 𝐵)) = (2 · (2 · (𝐴 ·ih 𝐵)))
19 2t2e4 11054 . . . . 5 (2 · 2) = 4
2019oveq1i 6559 . . . 4 ((2 · 2) · (𝐴 ·ih 𝐵)) = (4 · (𝐴 ·ih 𝐵))
2117, 18, 203eqtr2ri 2639 . . 3 (4 · (𝐴 ·ih 𝐵)) = (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
222, 8hicli 27322 . . . . . . 7 (𝐴 ·ih 𝐷) ∈ ℂ
237, 3hicli 27322 . . . . . . 7 (𝐶 ·ih 𝐵) ∈ ℂ
2422, 23addcli 9923 . . . . . 6 ((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) ∈ ℂ
2524, 10, 10pnncani 10255 . . . . 5 ((((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))) = (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
262, 7, 8, 3normlem8 27358 . . . . . 6 ((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) = (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
272, 7, 8, 3normlem9 27359 . . . . . 6 ((𝐴 𝐶) ·ih (𝐷 𝐵)) = (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
2826, 27oveq12i 6561 . . . . 5 (((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) = ((((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))))
29102timesi 11024 . . . . 5 (2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) = (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
3025, 28, 293eqtr4i 2642 . . . 4 (((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) = (2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
31 ax-icn 9874 . . . . . . . . . 10 i ∈ ℂ
3231, 7hvmulcli 27255 . . . . . . . . 9 (i · 𝐶) ∈ ℋ
3331, 3hvmulcli 27255 . . . . . . . . 9 (i · 𝐵) ∈ ℋ
342, 32, 8, 33normlem8 27358 . . . . . . . 8 ((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) = (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
352, 32, 8, 33normlem9 27359 . . . . . . . 8 ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))) = (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
3634, 35oveq12i 6561 . . . . . . 7 (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))) = ((((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))))
3732, 33hicli 27322 . . . . . . . . 9 ((i · 𝐶) ·ih (i · 𝐵)) ∈ ℂ
3822, 37addcli 9923 . . . . . . . 8 ((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) ∈ ℂ
392, 33hicli 27322 . . . . . . . . 9 (𝐴 ·ih (i · 𝐵)) ∈ ℂ
4032, 8hicli 27322 . . . . . . . . 9 ((i · 𝐶) ·ih 𝐷) ∈ ℂ
4139, 40addcli 9923 . . . . . . . 8 ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) ∈ ℂ
4238, 41, 41pnncani 10255 . . . . . . 7 ((((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))) = (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
43412timesi 11024 . . . . . . . 8 (2 · ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
44 his5 27327 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (i · 𝐵)) = ((∗‘i) · (𝐴 ·ih 𝐵)))
4531, 2, 3, 44mp3an 1416 . . . . . . . . . . 11 (𝐴 ·ih (i · 𝐵)) = ((∗‘i) · (𝐴 ·ih 𝐵))
46 cji 13747 . . . . . . . . . . . 12 (∗‘i) = -i
4746oveq1i 6559 . . . . . . . . . . 11 ((∗‘i) · (𝐴 ·ih 𝐵)) = (-i · (𝐴 ·ih 𝐵))
4845, 47eqtri 2632 . . . . . . . . . 10 (𝐴 ·ih (i · 𝐵)) = (-i · (𝐴 ·ih 𝐵))
49 ax-his3 27325 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((i · 𝐶) ·ih 𝐷) = (i · (𝐶 ·ih 𝐷)))
5031, 7, 8, 49mp3an 1416 . . . . . . . . . 10 ((i · 𝐶) ·ih 𝐷) = (i · (𝐶 ·ih 𝐷))
5148, 50oveq12i 6561 . . . . . . . . 9 ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) = ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))
5251oveq2i 6560 . . . . . . . 8 (2 · ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5343, 52eqtr3i 2634 . . . . . . 7 (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5436, 42, 533eqtri 2636 . . . . . 6 (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5554oveq2i 6560 . . . . 5 (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))) = (i · (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))))
56 negicn 10161 . . . . . . . 8 -i ∈ ℂ
5756, 4mulcli 9924 . . . . . . 7 (-i · (𝐴 ·ih 𝐵)) ∈ ℂ
5831, 9mulcli 9924 . . . . . . 7 (i · (𝐶 ·ih 𝐷)) ∈ ℂ
5957, 58addcli 9923 . . . . . 6 ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))) ∈ ℂ
606, 31, 59mul12i 10110 . . . . 5 (2 · (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))) = (i · (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))))
6131, 57, 58adddii 9929 . . . . . . 7 (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))) = ((i · (-i · (𝐴 ·ih 𝐵))) + (i · (i · (𝐶 ·ih 𝐷))))
6231, 31mulneg2i 10356 . . . . . . . . . . 11 (i · -i) = -(i · i)
63 ixi 10535 . . . . . . . . . . . 12 (i · i) = -1
6463negeqi 10153 . . . . . . . . . . 11 -(i · i) = --1
65 negneg1e1 11005 . . . . . . . . . . 11 --1 = 1
6662, 64, 653eqtri 2636 . . . . . . . . . 10 (i · -i) = 1
6766oveq1i 6559 . . . . . . . . 9 ((i · -i) · (𝐴 ·ih 𝐵)) = (1 · (𝐴 ·ih 𝐵))
6831, 56, 4mulassi 9928 . . . . . . . . 9 ((i · -i) · (𝐴 ·ih 𝐵)) = (i · (-i · (𝐴 ·ih 𝐵)))
694mulid2i 9922 . . . . . . . . 9 (1 · (𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵)
7067, 68, 693eqtr3i 2640 . . . . . . . 8 (i · (-i · (𝐴 ·ih 𝐵))) = (𝐴 ·ih 𝐵)
7163oveq1i 6559 . . . . . . . . 9 ((i · i) · (𝐶 ·ih 𝐷)) = (-1 · (𝐶 ·ih 𝐷))
7231, 31, 9mulassi 9928 . . . . . . . . 9 ((i · i) · (𝐶 ·ih 𝐷)) = (i · (i · (𝐶 ·ih 𝐷)))
739mulm1i 10354 . . . . . . . . 9 (-1 · (𝐶 ·ih 𝐷)) = -(𝐶 ·ih 𝐷)
7471, 72, 733eqtr3i 2640 . . . . . . . 8 (i · (i · (𝐶 ·ih 𝐷))) = -(𝐶 ·ih 𝐷)
7570, 74oveq12i 6561 . . . . . . 7 ((i · (-i · (𝐴 ·ih 𝐵))) + (i · (i · (𝐶 ·ih 𝐷)))) = ((𝐴 ·ih 𝐵) + -(𝐶 ·ih 𝐷))
764, 9negsubi 10238 . . . . . . 7 ((𝐴 ·ih 𝐵) + -(𝐶 ·ih 𝐷)) = ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))
7761, 75, 763eqtri 2636 . . . . . 6 (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))) = ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))
7877oveq2i 6560 . . . . 5 (2 · (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))) = (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))
7955, 60, 783eqtr2i 2638 . . . 4 (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))) = (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))
8030, 79oveq12i 6561 . . 3 ((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) = ((2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) + (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
8112, 21, 803eqtr4i 2642 . 2 (4 · (𝐴 ·ih 𝐵)) = ((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))))
821, 4, 5, 81mvllmuli 10737 1 (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  4c4 10949  ccj 13684  chil 27160   + cva 27161   · csm 27162   ·ih csp 27163   cmv 27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hfvadd 27241  ax-hfvmul 27246  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-3 10957  df-4 10958  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212
This theorem is referenced by:  polidi  27399  lnopeq0lem1  28248  lnophmlem2  28260
  Copyright terms: Public domain W3C validator