Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmaple Structured version   Visualization version   GIF version

Theorem pmaple 34065
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmaple.b 𝐵 = (Base‘𝐾)
pmaple.l = (le‘𝐾)
pmaple.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmaple ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))

Proof of Theorem pmaple
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 hlpos 33670 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2 pmaple.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
3 eqid 2610 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
42, 3atbase 33594 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
5 pmaple.l . . . . . . . . . . . . . . 15 = (le‘𝐾)
62, 5postr 16776 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
76exp4b 630 . . . . . . . . . . . . 13 (𝐾 ∈ Poset → ((𝑝𝐵𝑋𝐵𝑌𝐵) → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
873expd 1276 . . . . . . . . . . . 12 (𝐾 ∈ Poset → (𝑝𝐵 → (𝑋𝐵 → (𝑌𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
98com23 84 . . . . . . . . . . 11 (𝐾 ∈ Poset → (𝑋𝐵 → (𝑝𝐵 → (𝑌𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
109com34 89 . . . . . . . . . 10 (𝐾 ∈ Poset → (𝑋𝐵 → (𝑌𝐵 → (𝑝𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))))
11103imp 1249 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐵 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
124, 11syl5 33 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
1312com34 89 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (Atoms‘𝐾) → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌))))
1413com23 84 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑝 ∈ (Atoms‘𝐾) → (𝑝 𝑋𝑝 𝑌))))
1514ralrimdv 2951 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌)))
161, 15syl3an1 1351 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌)))
17 ss2rab 3641 . . . 4 ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ↔ ∀𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋𝑝 𝑌))
1816, 17syl6ibr 241 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
19 hlclat 33663 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
20 ssrab2 3650 . . . . . . . . 9 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ (Atoms‘𝐾)
212, 3atssbase 33595 . . . . . . . . 9 (Atoms‘𝐾) ⊆ 𝐵
2220, 21sstri 3577 . . . . . . . 8 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ 𝐵
23 eqid 2610 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
242, 5, 23lubss 16944 . . . . . . . 8 ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} ⊆ 𝐵 ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
2522, 24mp3an2 1404 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
2625ex 449 . . . . . 6 (𝐾 ∈ CLat → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
2719, 26syl 17 . . . . 5 (𝐾 ∈ HL → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
28273ad2ant1 1075 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})))
29 hlomcmat 33669 . . . . . . 7 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
30293ad2ant1 1075 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
31 simp2 1055 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
322, 5, 23, 3atlatmstc 33624 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) = 𝑋)
3330, 31, 32syl2anc 691 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) = 𝑋)
34 simp3 1056 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
352, 5, 23, 3atlatmstc 33624 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) = 𝑌)
3630, 34, 35syl2anc 691 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) = 𝑌)
3733, 36breq12d 4596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋}) ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}) ↔ 𝑋 𝑌))
3828, 37sylibd 228 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ({𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌} → 𝑋 𝑌))
3918, 38impbid 201 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
40 pmaple.m . . . . 5 𝑀 = (pmap‘𝐾)
412, 5, 3, 40pmapval 34061 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋})
42413adant3 1074 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋})
432, 5, 3, 40pmapval 34061 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})
44433adant2 1073 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌})
4542, 44sseq12d 3597 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑋} ⊆ {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝 𝑌}))
4639, 45bitr4d 270 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  lubclub 16765  CLatccla 16930  OMLcoml 33480  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  pmapcpmap 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-pmap 33808
This theorem is referenced by:  pmap11  34066  hlmod1i  34160  paddunN  34231  pmapojoinN  34272  pl42N  34287
  Copyright terms: Public domain W3C validator