Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Structured version   Visualization version   GIF version

Theorem pmapglb2N 34075
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows 𝑆 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2N ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐾   𝑥,𝑆
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 33667 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2610 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 33498 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6107 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 34071 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2644 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 fveq2 6103 . . . . . 6 (𝑆 = ∅ → (𝐺𝑆) = (𝐺‘∅))
1211fveq2d 6107 . . . . 5 (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝑀‘(𝐺‘∅)))
13 riin0 4530 . . . . 5 (𝑆 = ∅ → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝐴)
1412, 13eqeq12d 2625 . . . 4 (𝑆 = ∅ → ((𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
1510, 14syl5ibrcom 236 . . 3 (𝐾 ∈ HL → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
1615adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 = ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
17 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
1817, 2, 7pmapglb 34074 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = 𝑥𝑆 (𝑀𝑥))
19 simpr 476 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝑆)
20 simpll 786 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
21 ssel2 3563 . . . . . . . . . . . . 13 ((𝑆𝐵𝑥𝑆) → 𝑥𝐵)
2221adantll 746 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
2317, 6, 7pmapssat 34063 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐵) → (𝑀𝑥) ⊆ 𝐴)
2420, 22, 23syl2anc 691 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑀𝑥) ⊆ 𝐴)
2519, 24jca 553 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
2625ex 449 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑥𝑆 → (𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
2726eximdv 1833 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴)))
28 n0 3890 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
29 df-rex 2902 . . . . . . . 8 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ ∃𝑥(𝑥𝑆 ∧ (𝑀𝑥) ⊆ 𝐴))
3027, 28, 293imtr4g 284 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴))
31303impia 1253 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → ∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
32 iinss 4507 . . . . . 6 (∃𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
3331, 32syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴)
34 sseqin2 3779 . . . . 5 ( 𝑥𝑆 (𝑀𝑥) ⊆ 𝐴 ↔ (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3533, 34sylib 207 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝐴 𝑥𝑆 (𝑀𝑥)) = 𝑥𝑆 (𝑀𝑥))
3618, 35eqtr4d 2647 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
37363expia 1259 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑆 ≠ ∅ → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥))))
3816, 37pm2.61dne 2868 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀‘(𝐺𝑆)) = (𝐴 𝑥𝑆 (𝑀𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  cin 3539  wss 3540  c0 3874   ciin 4456  cfv 5804  Basecbs 15695  glbcglb 16766  1.cp1 16861  OPcops 33477  Atomscatm 33568  HLchlt 33655  pmapcpmap 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-ats 33572  df-hlat 33656  df-pmap 33808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator