Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap11 Structured version   Visualization version   GIF version

Theorem pmap11 34066
Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmap11.b 𝐵 = (Base‘𝐾)
pmap11.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem pmap11
StepHypRef Expression
1 hllat 33668 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 pmap11.b . . . . 5 𝐵 = (Base‘𝐾)
3 eqid 2610 . . . . 5 (le‘𝐾) = (le‘𝐾)
42, 3latasymb 16877 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
51, 4syl3an1 1351 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
6 pmap11.m . . . . 5 𝑀 = (pmap‘𝐾)
72, 3, 6pmaple 34065 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))
82, 3, 6pmaple 34065 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀𝑌) ⊆ (𝑀𝑋)))
983com23 1263 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀𝑌) ⊆ (𝑀𝑋)))
107, 9anbi12d 743 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋))))
115, 10bitr3d 269 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋))))
12 eqss 3583 . 2 ((𝑀𝑋) = (𝑀𝑌) ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋)))
1311, 12syl6rbbr 278 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  Latclat 16868  HLchlt 33655  pmapcpmap 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-pmap 33808
This theorem is referenced by:  pmapeq0  34070  isline3  34080  lncvrelatN  34085
  Copyright terms: Public domain W3C validator