Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem1 Structured version   Visualization version   GIF version

Theorem pellexlem1 36411
Description: Lemma for pellex 36417. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0)

Proof of Theorem pellexlem1
StepHypRef Expression
1 nncn 10905 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
213ad2ant2 1076 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
32sqcld 12868 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
4 nncn 10905 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
543ad2ant1 1075 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐷 ∈ ℂ)
6 nncn 10905 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
763ad2ant3 1077 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
87sqcld 12868 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
95, 8mulcld 9939 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐷 · (𝐵↑2)) ∈ ℂ)
103, 9subeq0ad 10281 . . . 4 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) = 0 ↔ (𝐴↑2) = (𝐷 · (𝐵↑2))))
11 nnne0 10930 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
12113ad2ant3 1077 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
13 sqne0 12792 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
147, 13syl 17 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
1512, 14mpbird 246 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ≠ 0)
163, 5, 8, 15divmul3d 10714 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 𝐷 ↔ (𝐴↑2) = (𝐷 · (𝐵↑2))))
17 sqdiv 12790 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
1817fveq2d 6107 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (√‘((𝐴 / 𝐵)↑2)) = (√‘((𝐴↑2) / (𝐵↑2))))
192, 7, 12, 18syl3anc 1318 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴 / 𝐵)↑2)) = (√‘((𝐴↑2) / (𝐵↑2))))
20 nnre 10904 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21203ad2ant2 1076 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
22 nnre 10904 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
23223ad2ant3 1077 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
2421, 23, 12redivcld 10732 . . . . . . . . 9 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
25 nnnn0 11176 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2625nn0ge0d 11231 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
27263ad2ant2 1076 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
28 nngt0 10926 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
29283ad2ant3 1077 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
30 divge0 10771 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
3121, 27, 23, 29, 30syl22anc 1319 . . . . . . . . 9 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴 / 𝐵))
3224, 31sqrtsqd 14006 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴 / 𝐵)↑2)) = (𝐴 / 𝐵))
3319, 32eqtr3d 2646 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
34 nnq 11677 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℚ)
35343ad2ant2 1076 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℚ)
36 nnq 11677 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℚ)
37363ad2ant3 1077 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℚ)
38 qdivcl 11685 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
3935, 37, 12, 38syl3anc 1318 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
4033, 39eqeltrd 2688 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) ∈ ℚ)
41 fveq2 6103 . . . . . . 7 (((𝐴↑2) / (𝐵↑2)) = 𝐷 → (√‘((𝐴↑2) / (𝐵↑2))) = (√‘𝐷))
4241eleq1d 2672 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) = 𝐷 → ((√‘((𝐴↑2) / (𝐵↑2))) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
4340, 42syl5ibcom 234 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 𝐷 → (√‘𝐷) ∈ ℚ))
4416, 43sylbird 249 . . . 4 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) = (𝐷 · (𝐵↑2)) → (√‘𝐷) ∈ ℚ))
4510, 44sylbid 229 . . 3 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) = 0 → (√‘𝐷) ∈ ℚ))
4645necon3bd 2796 . 2 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ (√‘𝐷) ∈ ℚ → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0))
4746imp 444 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  cq 11664  cexp 12722  csqrt 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823
This theorem is referenced by:  pellexlem3  36413
  Copyright terms: Public domain W3C validator