MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Structured version   Visualization version   GIF version

Theorem peano5 6981
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as theorem findes 6988. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
peano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldifn 3695 . . . . . 6 (𝑦 ∈ (ω ∖ 𝐴) → ¬ 𝑦𝐴)
21adantl 481 . . . . 5 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ 𝑦𝐴)
3 eldifi 3694 . . . . . . . . . 10 (𝑦 ∈ (ω ∖ 𝐴) → 𝑦 ∈ ω)
43adantl 481 . . . . . . . . 9 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → 𝑦 ∈ ω)
5 elndif 3696 . . . . . . . . . 10 (∅ ∈ 𝐴 → ¬ ∅ ∈ (ω ∖ 𝐴))
6 eleq1 2676 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω ∖ 𝐴)))
76biimpcd 238 . . . . . . . . . . 11 (𝑦 ∈ (ω ∖ 𝐴) → (𝑦 = ∅ → ∅ ∈ (ω ∖ 𝐴)))
87necon3bd 2796 . . . . . . . . . 10 (𝑦 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈ (ω ∖ 𝐴) → 𝑦 ≠ ∅))
95, 8mpan9 485 . . . . . . . . 9 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → 𝑦 ≠ ∅)
10 nnsuc 6974 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑦 ≠ ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
114, 9, 10syl2anc 691 . . . . . . . 8 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
1211adantlr 747 . . . . . . 7 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
1312adantr 480 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
14 nfra1 2925 . . . . . . . . . . 11 𝑥𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)
15 nfv 1830 . . . . . . . . . . 11 𝑥(𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
1614, 15nfan 1816 . . . . . . . . . 10 𝑥(∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅))
17 nfv 1830 . . . . . . . . . 10 𝑥 𝑦𝐴
18 rsp 2913 . . . . . . . . . . 11 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑥 ∈ ω → (𝑥𝐴 → suc 𝑥𝐴)))
19 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
2019sucid 5721 . . . . . . . . . . . . . . . . 17 𝑥 ∈ suc 𝑥
21 eleq2 2677 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑥𝑦𝑥 ∈ suc 𝑥))
2220, 21mpbiri 247 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥𝑥𝑦)
23 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ suc 𝑥 ∈ ω))
24 peano2b 6973 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
2523, 24syl6bbr 277 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ 𝑥 ∈ ω))
26 minel 3985 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ¬ 𝑥 ∈ (ω ∖ 𝐴))
27 neldif 3697 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ ¬ 𝑥 ∈ (ω ∖ 𝐴)) → 𝑥𝐴)
2826, 27sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ (𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → 𝑥𝐴)
2928exp32 629 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
3025, 29syl6bi 242 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴))))
3122, 30mpid 43 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
323, 31syl5 33 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑥 → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
3332impd 446 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑥𝐴))
34 eleq1a 2683 . . . . . . . . . . . . . 14 (suc 𝑥𝐴 → (𝑦 = suc 𝑥𝑦𝐴))
3534com12 32 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → (suc 𝑥𝐴𝑦𝐴))
3633, 35imim12d 79 . . . . . . . . . . . 12 (𝑦 = suc 𝑥 → ((𝑥𝐴 → suc 𝑥𝐴) → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)))
3736com13 86 . . . . . . . . . . 11 ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ((𝑥𝐴 → suc 𝑥𝐴) → (𝑦 = suc 𝑥𝑦𝐴)))
3818, 37sylan9 687 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (𝑥 ∈ ω → (𝑦 = suc 𝑥𝑦𝐴)))
3916, 17, 38rexlimd 3008 . . . . . . . . 9 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
4039exp32 629 . . . . . . . 8 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))))
4140a1i 11 . . . . . . 7 (∅ ∈ 𝐴 → (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴)))))
4241imp41 617 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
4313, 42mpd 15 . . . . 5 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)
442, 43mtand 689 . . . 4 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4544nrexdv 2984 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
46 ordom 6966 . . . . 5 Ord ω
47 difss 3699 . . . . 5 (ω ∖ 𝐴) ⊆ ω
48 tz7.5 5661 . . . . 5 ((Ord ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖ 𝐴) ≠ ∅) → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4946, 47, 48mp3an12 1406 . . . 4 ((ω ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
5049necon1bi 2810 . . 3 (¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (ω ∖ 𝐴) = ∅)
5145, 50syl 17 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → (ω ∖ 𝐴) = ∅)
52 ssdif0 3896 . 2 (ω ⊆ 𝐴 ↔ (ω ∖ 𝐴) = ∅)
5351, 52sylibr 223 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  cin 3539  wss 3540  c0 3874  Ord word 5639  suc csuc 5642  ωcom 6957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958
This theorem is referenced by:  find  6983  finds  6984  finds2  6986  omex  8423  dfom3  8427
  Copyright terms: Public domain W3C validator