Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0lem Structured version   Visualization version   GIF version

Theorem ovn0lem 39455
Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovn0lem.x (𝜑𝑋 ∈ Fin)
ovn0lem.n0 (𝜑𝑋 ≠ ∅)
ovn0lem.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
ovn0lem.infm (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
ovn0lem.i 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
Assertion
Ref Expression
ovn0lem (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Distinct variable groups:   𝑖,𝐼,𝑗,𝑘   𝐼,𝑙,𝑗,𝑘   𝑖,𝑋,𝑗,𝑘,𝑧   𝑋,𝑙   𝜑,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑧,𝑖)   𝐼(𝑧)   𝑀(𝑧,𝑖,𝑗,𝑘,𝑙)

Proof of Theorem ovn0lem
StepHypRef Expression
1 iccssxr 12127 . . 3 (0[,]+∞) ⊆ ℝ*
2 ovn0lem.infm . . 3 (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))
31, 2sseldi 3566 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ∈ ℝ*)
4 0xr 9965 . . 3 0 ∈ ℝ*
54a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
6 ovn0lem.m . . . . 5 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}
7 ssrab2 3650 . . . . 5 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))} ⊆ ℝ*
86, 7eqsstri 3598 . . . 4 𝑀 ⊆ ℝ*
98a1i 11 . . 3 (𝜑𝑀 ⊆ ℝ*)
10 1re 9918 . . . . . . . . . . . . . 14 1 ∈ ℝ
11 0re 9919 . . . . . . . . . . . . . 14 0 ∈ ℝ
1210, 11pm3.2i 470 . . . . . . . . . . . . 13 (1 ∈ ℝ ∧ 0 ∈ ℝ)
13 opelxp 5070 . . . . . . . . . . . . 13 (⟨1, 0⟩ ∈ (ℝ × ℝ) ↔ (1 ∈ ℝ ∧ 0 ∈ ℝ))
1412, 13mpbir 220 . . . . . . . . . . . 12 ⟨1, 0⟩ ∈ (ℝ × ℝ)
1514a1i 11 . . . . . . . . . . 11 ((𝜑𝑙𝑋) → ⟨1, 0⟩ ∈ (ℝ × ℝ))
16 eqid 2610 . . . . . . . . . . 11 (𝑙𝑋 ↦ ⟨1, 0⟩) = (𝑙𝑋 ↦ ⟨1, 0⟩)
1715, 16fmptd 6292 . . . . . . . . . 10 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ))
18 reex 9906 . . . . . . . . . . . . 13 ℝ ∈ V
1918, 18xpex 6860 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
2019a1i 11 . . . . . . . . . . 11 (𝜑 → (ℝ × ℝ) ∈ V)
21 ovn0lem.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
22 elmapg 7757 . . . . . . . . . . 11 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2320, 21, 22syl2anc 691 . . . . . . . . . 10 (𝜑 → ((𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ ⟨1, 0⟩):𝑋⟶(ℝ × ℝ)))
2417, 23mpbird 246 . . . . . . . . 9 (𝜑 → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
2524adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
26 ovn0lem.i . . . . . . . 8 𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))
2725, 26fmptd 6292 . . . . . . 7 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
28 ovex 6577 . . . . . . . . 9 ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V
2928a1i 11 . . . . . . . 8 (𝜑 → ((ℝ × ℝ) ↑𝑚 𝑋) ∈ V)
30 nnex 10903 . . . . . . . . 9 ℕ ∈ V
3130a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
32 elmapg 7757 . . . . . . . 8 ((((ℝ × ℝ) ↑𝑚 𝑋) ∈ V ∧ ℕ ∈ V) → (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
3329, 31, 32syl2anc 691 . . . . . . 7 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)))
3427, 33mpbird 246 . . . . . 6 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
35 ovn0lem.n0 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
36 n0 3890 . . . . . . . . . . . 12 (𝑋 ≠ ∅ ↔ ∃𝑙 𝑙𝑋)
3735, 36sylib 207 . . . . . . . . . . 11 (𝜑 → ∃𝑙 𝑙𝑋)
3837adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∃𝑙 𝑙𝑋)
39 nfv 1830 . . . . . . . . . . . . 13 𝑘((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)
40 nfcv 2751 . . . . . . . . . . . . 13 𝑘(vol‘(([,) ∘ (𝐼𝑗))‘𝑙))
4121ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑋 ∈ Fin)
4227ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
43 elmapi 7765 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
4544adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
46 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
4745, 46fvovco 38376 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
48 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
4925elexd 3187 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V)
5026fvmpt2 6200 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ ∧ (𝑙𝑋 ↦ ⟨1, 0⟩) ∈ V) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5148, 49, 50syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗) = (𝑙𝑋 ↦ ⟨1, 0⟩))
53 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → ⟨1, 0⟩ = ⟨1, 0⟩)
5414elexi 3186 . . . . . . . . . . . . . . . . . . . . . . 23 ⟨1, 0⟩ ∈ V
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ⟨1, 0⟩ ∈ V)
5652, 53, 46, 55fvmptd 6197 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) = ⟨1, 0⟩)
5756fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = (1st ‘⟨1, 0⟩))
5810elexi 3186 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
594elexi 3186 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
6058, 59op1st 7067 . . . . . . . . . . . . . . . . . . . . 21 (1st ‘⟨1, 0⟩) = 1
6160a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘⟨1, 0⟩) = 1)
6257, 61eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = 1)
6356fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = (2nd ‘⟨1, 0⟩))
6458, 59op2nd 7068 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨1, 0⟩) = 0
6564a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘⟨1, 0⟩) = 0)
6663, 65eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = 0)
6762, 66oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (1[,)0))
68 0le1 10430 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
6910rexri 9976 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ*
70 ico0 12092 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 0 ∈ ℝ*) → ((1[,)0) = ∅ ↔ 0 ≤ 1))
7169, 4, 70mp2an 704 . . . . . . . . . . . . . . . . . . . 20 ((1[,)0) = ∅ ↔ 0 ≤ 1)
7268, 71mpbir 220 . . . . . . . . . . . . . . . . . . 19 (1[,)0) = ∅
7372a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1[,)0) = ∅)
7447, 67, 733eqtrd 2648 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ∅)
7574fveq2d 6107 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘∅))
76 vol0 38851 . . . . . . . . . . . . . . . . 17 (vol‘∅) = 0
7776a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘∅) = 0)
7875, 77eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
79 0cn 9911 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
8079a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 0 ∈ ℂ)
8178, 80eqeltrd 2688 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
8281adantlr 747 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) ∈ ℂ)
83 fveq2 6103 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑙))
8483fveq2d 6107 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)))
85 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → 𝑙𝑋)
86 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (𝑘𝑋𝑙𝑋))
8786anbi2d 736 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋)))
8884eqeq1d 2612 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → ((vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0 ↔ (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0))
8987, 88imbi12d 333 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0) ↔ (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)))
9089, 78chvarv 2251 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → (vol‘(([,) ∘ (𝐼𝑗))‘𝑙)) = 0)
9139, 40, 41, 82, 84, 85, 90fprod0 38663 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑙𝑋) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9291ex 449 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9392exlimdv 1848 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (∃𝑙 𝑙𝑋 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0))
9438, 93mpd 15 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = 0)
9594mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ 0))
9695fveq2d 6107 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ 0)))
97 nfv 1830 . . . . . . . 8 𝑗𝜑
9897, 31sge0z 39268 . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ 0)) = 0)
99 eqidd 2611 . . . . . . 7 (𝜑 → 0 = 0)
10096, 98, 993eqtrrd 2649 . . . . . 6 (𝜑 → 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
101 fveq1 6102 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
102101coeq2d 5206 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
103102fveq1d 6105 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
104103fveq2d 6107 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
105104ralrimivw 2950 . . . . . . . . . . 11 (𝑖 = 𝐼 → ∀𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
106105prodeq2d 14491 . . . . . . . . . 10 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
107106mpteq2dv 4673 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
108107fveq2d 6107 . . . . . . . 8 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
109108eqeq2d 2620 . . . . . . 7 (𝑖 = 𝐼 → (0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
110109rspcev 3282 . . . . . 6 ((𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
11134, 100, 110syl2anc 691 . . . . 5 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1125, 111jca 553 . . . 4 (𝜑 → (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
113 eqeq1 2614 . . . . . 6 (𝑧 = 0 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
114113rexbidv 3034 . . . . 5 (𝑧 = 0 → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
115114, 6elrab2 3333 . . . 4 (0 ∈ 𝑀 ↔ (0 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)0 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
116112, 115sylibr 223 . . 3 (𝜑 → 0 ∈ 𝑀)
117 infxrlb 12036 . . 3 ((𝑀 ⊆ ℝ* ∧ 0 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 0)
1189, 116, 117syl2anc 691 . 2 (𝜑 → inf(𝑀, ℝ*, < ) ≤ 0)
119 pnfxr 9971 . . . 4 +∞ ∈ ℝ*
120119a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
121 iccgelb 12101 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ inf(𝑀, ℝ*, < ) ∈ (0[,]+∞)) → 0 ≤ inf(𝑀, ℝ*, < ))
1225, 120, 2, 121syl3anc 1318 . 2 (𝜑 → 0 ≤ inf(𝑀, ℝ*, < ))
1233, 5, 118, 122xrletrid 11862 1 (𝜑 → inf(𝑀, ℝ*, < ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  𝑚 cmap 7744  Fincfn 7841  infcinf 8230  cc 9813  cr 9814  0cc0 9815  1c1 9816  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cn 10897  [,)cico 12048  [,]cicc 12049  cprod 14474  volcvol 23039  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-prod 14475  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-sumge0 39256
This theorem is referenced by:  ovn0  39456
  Copyright terms: Public domain W3C validator