MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppglsm Structured version   Visualization version   GIF version

Theorem oppglsm 17880
Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
oppglsm.o 𝑂 = (oppg𝐺)
oppglsm.p = (LSSum‘𝐺)
Assertion
Ref Expression
oppglsm (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇)

Proof of Theorem oppglsm
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2610 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3 oppglsm.p . . . . . . . 8 = (LSSum‘𝐺)
41, 2, 3lsmfval 17876 . . . . . . 7 (𝐺 ∈ V → = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
54tposeqd 7242 . . . . . 6 (𝐺 ∈ V → tpos = tpos (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
6 eqid 2610 . . . . . . . . . . . . 13 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
76reldmmpt2 6669 . . . . . . . . . . . 12 Rel dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
86mpt2fun 6660 . . . . . . . . . . . . 13 Fun (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
9 funforn 6035 . . . . . . . . . . . . 13 (Fun (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) ↔ (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)))
108, 9mpbi 219 . . . . . . . . . . . 12 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
11 tposfo2 7262 . . . . . . . . . . . 12 (Rel dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → ((𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
127, 10, 11mp2 9 . . . . . . . . . . 11 tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
13 forn 6031 . . . . . . . . . . 11 (tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)))
1412, 13ax-mp 5 . . . . . . . . . 10 ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
15 oppglsm.o . . . . . . . . . . . . . . . 16 𝑂 = (oppg𝐺)
16 eqid 2610 . . . . . . . . . . . . . . . 16 (+g𝑂) = (+g𝑂)
172, 15, 16oppgplus 17602 . . . . . . . . . . . . . . 15 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
1817eqcomi 2619 . . . . . . . . . . . . . 14 (𝑦(+g𝐺)𝑥) = (𝑥(+g𝑂)𝑦)
1918a1i 11 . . . . . . . . . . . . 13 ((𝑦𝑢𝑥𝑡) → (𝑦(+g𝐺)𝑥) = (𝑥(+g𝑂)𝑦))
2019mpt2eq3ia 6618 . . . . . . . . . . . 12 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑦𝑢, 𝑥𝑡 ↦ (𝑥(+g𝑂)𝑦))
2120tposmpt2 7276 . . . . . . . . . . 11 tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2221rneqi 5273 . . . . . . . . . 10 ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2314, 22eqtr3i 2634 . . . . . . . . 9 ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2423a1i 11 . . . . . . . 8 ((𝑢 ∈ 𝒫 (Base‘𝐺) ∧ 𝑡 ∈ 𝒫 (Base‘𝐺)) → ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
2524mpt2eq3ia 6618 . . . . . . 7 (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))) = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
2625tposmpt2 7276 . . . . . 6 tpos (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
275, 26syl6eq 2660 . . . . 5 (𝐺 ∈ V → tpos = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))))
28 fvex 6113 . . . . . . 7 (oppg𝐺) ∈ V
2915, 28eqeltri 2684 . . . . . 6 𝑂 ∈ V
3015, 1oppgbas 17604 . . . . . . 7 (Base‘𝐺) = (Base‘𝑂)
31 eqid 2610 . . . . . . 7 (LSSum‘𝑂) = (LSSum‘𝑂)
3230, 16, 31lsmfval 17876 . . . . . 6 (𝑂 ∈ V → (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))))
3329, 32ax-mp 5 . . . . 5 (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
3427, 33syl6reqr 2663 . . . 4 (𝐺 ∈ V → (LSSum‘𝑂) = tpos )
3534oveqd 6566 . . 3 (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇tpos 𝑈))
36 ovtpos 7254 . . 3 (𝑇tpos 𝑈) = (𝑈 𝑇)
3735, 36syl6eq 2660 . 2 (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇))
38 eqid 2610 . . . . . . 7 (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)
39 0ex 4718 . . . . . . 7 ∅ ∈ V
40 eqidd 2611 . . . . . . 7 ((𝑡 = 𝑇𝑢 = 𝑈) → ∅ = ∅)
4138, 39, 40elovmpt2 6777 . . . . . 6 (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ↔ (𝑇 ∈ 𝒫 (Base‘𝐺) ∧ 𝑈 ∈ 𝒫 (Base‘𝐺) ∧ 𝑥 ∈ ∅))
4241simp3bi 1071 . . . . 5 (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) → 𝑥 ∈ ∅)
4342ssriv 3572 . . . 4 (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅
44 ss0 3926 . . . 4 ((𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅ → (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅)
4543, 44ax-mp 5 . . 3 (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅
46 elpwi 4117 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 (Base‘𝐺) → 𝑡 ⊆ (Base‘𝐺))
47463ad2ant2 1076 . . . . . . . . . . . 12 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 ⊆ (Base‘𝐺))
48 fvprc 6097 . . . . . . . . . . . . 13 𝐺 ∈ V → (Base‘𝐺) = ∅)
49483ad2ant1 1075 . . . . . . . . . . . 12 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (Base‘𝐺) = ∅)
5047, 49sseqtrd 3604 . . . . . . . . . . 11 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 ⊆ ∅)
51 ss0 3926 . . . . . . . . . . 11 (𝑡 ⊆ ∅ → 𝑡 = ∅)
5250, 51syl 17 . . . . . . . . . 10 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 = ∅)
53 eqid 2610 . . . . . . . . . 10 𝑢 = 𝑢
54 mpt2eq12 6613 . . . . . . . . . 10 ((𝑡 = ∅ ∧ 𝑢 = 𝑢) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = (𝑥 ∈ ∅, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
5552, 53, 54sylancl 693 . . . . . . . . 9 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = (𝑥 ∈ ∅, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
56 mpt20 6623 . . . . . . . . 9 (𝑥 ∈ ∅, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅
5755, 56syl6eq 2660 . . . . . . . 8 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅)
5857rneqd 5274 . . . . . . 7 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ran ∅)
59 rn0 5298 . . . . . . 7 ran ∅ = ∅
6058, 59syl6eq 2660 . . . . . 6 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅)
6160mpt2eq3dva 6617 . . . . 5 𝐺 ∈ V → (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅))
6233, 61syl5eq 2656 . . . 4 𝐺 ∈ V → (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅))
6362oveqd 6566 . . 3 𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈))
64 fvprc 6097 . . . . . 6 𝐺 ∈ V → (LSSum‘𝐺) = ∅)
653, 64syl5eq 2656 . . . . 5 𝐺 ∈ V → = ∅)
6665oveqd 6566 . . . 4 𝐺 ∈ V → (𝑈 𝑇) = (𝑈𝑇))
67 0ov 6580 . . . 4 (𝑈𝑇) = ∅
6866, 67syl6eq 2660 . . 3 𝐺 ∈ V → (𝑈 𝑇) = ∅)
6945, 63, 683eqtr4a 2670 . 2 𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇))
7037, 69pm2.61i 175 1 (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108  ccnv 5037  dom cdm 5038  ran crn 5039  Rel wrel 5043  Fun wfun 5798  ontowfo 5802  cfv 5804  (class class class)co 6549  cmpt2 6551  tpos ctpos 7238  Basecbs 15695  +gcplusg 15768  oppgcoppg 17598  LSSumclsm 17872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-oppg 17599  df-lsm 17874
This theorem is referenced by:  lsmmod2  17912  lsmdisj2r  17921
  Copyright terms: Public domain W3C validator