Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oposlem Structured version   Visualization version   GIF version

Theorem oposlem 33487
Description: Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
oposlem.b 𝐵 = (Base‘𝐾)
oposlem.l = (le‘𝐾)
oposlem.o = (oc‘𝐾)
oposlem.j = (join‘𝐾)
oposlem.m = (meet‘𝐾)
oposlem.f 0 = (0.‘𝐾)
oposlem.u 1 = (1.‘𝐾)
Assertion
Ref Expression
oposlem ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))

Proof of Theorem oposlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oposlem.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2610 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2610 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
4 oposlem.l . . . . 5 = (le‘𝐾)
5 oposlem.o . . . . 5 = (oc‘𝐾)
6 oposlem.j . . . . 5 = (join‘𝐾)
7 oposlem.m . . . . 5 = (meet‘𝐾)
8 oposlem.f . . . . 5 0 = (0.‘𝐾)
9 oposlem.u . . . . 5 1 = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 33485 . . . 4 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
1110simprbi 479 . . 3 (𝐾 ∈ OP → ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ))
12 fveq2 6103 . . . . . . 7 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1312eleq1d 2672 . . . . . 6 (𝑥 = 𝑋 → (( 𝑥) ∈ 𝐵 ↔ ( 𝑋) ∈ 𝐵))
1412fveq2d 6107 . . . . . . 7 (𝑥 = 𝑋 → ( ‘( 𝑥)) = ( ‘( 𝑋)))
15 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1614, 15eqeq12d 2625 . . . . . 6 (𝑥 = 𝑋 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑋)) = 𝑋))
17 breq1 4586 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
1812breq2d 4595 . . . . . . 7 (𝑥 = 𝑋 → (( 𝑦) ( 𝑥) ↔ ( 𝑦) ( 𝑋)))
1917, 18imbi12d 333 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦 → ( 𝑦) ( 𝑥)) ↔ (𝑋 𝑦 → ( 𝑦) ( 𝑋))))
2013, 16, 193anbi123d 1391 . . . . 5 (𝑥 = 𝑋 → ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋)))))
2115, 12oveq12d 6567 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2221eqeq1d 2612 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 1 ↔ (𝑋 ( 𝑋)) = 1 ))
2315, 12oveq12d 6567 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2423eqeq1d 2612 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 0 ↔ (𝑋 ( 𝑋)) = 0 ))
2520, 22, 243anbi123d 1391 . . . 4 (𝑥 = 𝑋 → (((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
26 breq2 4587 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
27 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2827breq1d 4593 . . . . . . 7 (𝑦 = 𝑌 → (( 𝑦) ( 𝑋) ↔ ( 𝑌) ( 𝑋)))
2926, 28imbi12d 333 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦 → ( 𝑦) ( 𝑋)) ↔ (𝑋 𝑌 → ( 𝑌) ( 𝑋))))
30293anbi3d 1397 . . . . 5 (𝑦 = 𝑌 → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋)))))
31303anbi1d 1395 . . . 4 (𝑦 = 𝑌 → (((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3225, 31rspc2v 3293 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3311, 32mpan9 485 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵)) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
34333impb 1252 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  occoc 15776  Posetcpo 16763  lubclub 16765  glbcglb 16766  joincjn 16767  meetcmee 16768  0.cp0 16860  1.cp1 16861  OPcops 33477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-dm 5048  df-iota 5768  df-fv 5812  df-ov 6552  df-oposet 33481
This theorem is referenced by:  opoccl  33499  opococ  33500  oplecon3  33504  opexmid  33512  opnoncon  33513
  Copyright terms: Public domain W3C validator