Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh1N Structured version   Visualization version   GIF version

Theorem omlfh1N 33563
Description: Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 27861 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b 𝐵 = (Base‘𝐾)
omlfh1.j = (join‘𝐾)
omlfh1.m = (meet‘𝐾)
omlfh1.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlfh1N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem omlfh1N
StepHypRef Expression
1 omllat 33547 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
2 omlfh1.b . . . . . 6 𝐵 = (Base‘𝐾)
3 eqid 2610 . . . . . 6 (le‘𝐾) = (le‘𝐾)
4 omlfh1.j . . . . . 6 = (join‘𝐾)
5 omlfh1.m . . . . . 6 = (meet‘𝐾)
62, 3, 4, 5latledi 16912 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
71, 6sylan 487 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
873adant3 1074 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
91adantr 480 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
10 simpr1 1060 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
11 simpr2 1061 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
12 simpr3 1062 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
132, 4latjcl 16874 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
149, 11, 12, 13syl3anc 1318 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
152, 5latmcom 16898 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
169, 10, 14, 15syl3anc 1318 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
17 omlol 33545 . . . . . . . . 9 (𝐾 ∈ OML → 𝐾 ∈ OL)
1817adantr 480 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
192, 5latmcl 16875 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
209, 10, 11, 19syl3anc 1318 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
212, 5latmcl 16875 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
229, 10, 12, 21syl3anc 1318 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
23 eqid 2610 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
242, 4, 5, 23oldmj1 33526 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
2518, 20, 22, 24syl3anc 1318 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
262, 4, 5, 23oldmm1 33522 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2718, 10, 11, 26syl3anc 1318 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
282, 4, 5, 23oldmm1 33522 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
2918, 10, 12, 28syl3anc 1318 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
3027, 29oveq12d 6567 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3125, 30eqtrd 2644 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3216, 31oveq12d 6567 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
33323adant3 1074 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
34 omlop 33546 . . . . . . . . . . 11 (𝐾 ∈ OML → 𝐾 ∈ OP)
3534adantr 480 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
362, 23opoccl 33499 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
3735, 10, 36syl2anc 691 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
382, 23opoccl 33499 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
3935, 11, 38syl2anc 691 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
402, 4latjcl 16874 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
419, 37, 39, 40syl3anc 1318 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
422, 23opoccl 33499 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
4335, 12, 42syl2anc 691 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
442, 4latjcl 16874 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
459, 37, 43, 44syl3anc 1318 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
462, 5latmcl 16875 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
479, 41, 45, 46syl3anc 1318 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
482, 5latmassOLD 33534 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
4918, 14, 10, 47, 48syl13anc 1320 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
50493adant3 1074 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
51 omlfh1.c . . . . . . . . . . . . . 14 𝐶 = (cm‘𝐾)
522, 23, 51cmt2N 33555 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
53523adant3r3 1268 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
54 simpl 472 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OML)
552, 4, 5, 23, 51cmtbr3N 33559 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5654, 10, 39, 55syl3anc 1318 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5753, 56bitrd 267 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5857biimpa 500 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
5958adantrr 749 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
60593impa 1251 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
612, 23, 51cmt2N 33555 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
62613adant3r2 1267 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
632, 4, 5, 23, 51cmtbr3N 33559 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6454, 10, 43, 63syl3anc 1318 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6562, 64bitrd 267 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6665biimpa 500 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6766adantrl 748 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
68673impa 1251 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6960, 68oveq12d 6567 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
702, 5latmmdiN 33539 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
7118, 10, 41, 45, 70syl13anc 1320 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
72713adant3 1074 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
732, 5latmmdiN 33539 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7418, 10, 39, 43, 73syl13anc 1320 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
75743adant3 1074 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7669, 72, 753eqtr4d 2654 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
7776oveq2d 6565 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))) = ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
782, 5latmcl 16875 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
799, 39, 43, 78syl3anc 1318 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
802, 5latm12 33535 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8118, 14, 10, 79, 80syl13anc 1320 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
82813adant3 1074 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8350, 77, 823eqtrd 2648 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
842, 4, 5, 23oldmj1 33526 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8518, 11, 12, 84syl3anc 1318 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8685oveq2d 6565 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
87 eqid 2610 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
882, 23, 5, 87opnoncon 33513 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
8935, 14, 88syl2anc 691 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
9086, 89eqtr3d 2646 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (0.‘𝐾))
9190oveq2d 6565 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 (0.‘𝐾)))
922, 5, 87olm01 33541 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9318, 10, 92syl2anc 691 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9491, 93eqtrd 2644 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
95943adant3 1074 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
9633, 83, 953eqtrd 2648 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾))
972, 4latjcl 16874 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
989, 20, 22, 97syl3anc 1318 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
992, 5latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1009, 10, 14, 99syl3anc 1318 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1012, 3, 5, 23, 87omllaw3 33550 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
10254, 98, 100, 101syl3anc 1318 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1031023adant3 1074 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1048, 96, 103mp2and 711 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍)))
105104eqcomd 2616 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  occoc 15776  joincjn 16767  meetcmee 16768  0.cp0 16860  Latclat 16868  OPcops 33477  cmccmtN 33478  OLcol 33479  OMLcoml 33480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-oposet 33481  df-cmtN 33482  df-ol 33483  df-oml 33484
This theorem is referenced by:  omlfh3N  33564  omlmod1i2N  33565
  Copyright terms: Public domain W3C validator