MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordi Structured version   Visualization version   GIF version

Theorem oeordi 7554
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeordi ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐴𝐵 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝐵)))

Proof of Theorem oeordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . 5 (𝑥 = suc 𝐴 → (𝐶𝑜 𝑥) = (𝐶𝑜 suc 𝐴))
21eleq2d 2673 . . . 4 (𝑥 = suc 𝐴 → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥) ↔ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴)))
32imbi2d 329 . . 3 (𝑥 = suc 𝐴 → ((𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥)) ↔ (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴))))
4 oveq2 6557 . . . . 5 (𝑥 = 𝑦 → (𝐶𝑜 𝑥) = (𝐶𝑜 𝑦))
54eleq2d 2673 . . . 4 (𝑥 = 𝑦 → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥) ↔ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)))
65imbi2d 329 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥)) ↔ (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))))
7 oveq2 6557 . . . . 5 (𝑥 = suc 𝑦 → (𝐶𝑜 𝑥) = (𝐶𝑜 suc 𝑦))
87eleq2d 2673 . . . 4 (𝑥 = suc 𝑦 → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥) ↔ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦)))
98imbi2d 329 . . 3 (𝑥 = suc 𝑦 → ((𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥)) ↔ (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦))))
10 oveq2 6557 . . . . 5 (𝑥 = 𝐵 → (𝐶𝑜 𝑥) = (𝐶𝑜 𝐵))
1110eleq2d 2673 . . . 4 (𝑥 = 𝐵 → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥) ↔ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝐵)))
1211imbi2d 329 . . 3 (𝑥 = 𝐵 → ((𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥)) ↔ (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝐵))))
13 eldifi 3694 . . . . . . . 8 (𝐶 ∈ (On ∖ 2𝑜) → 𝐶 ∈ On)
14 oecl 7504 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶𝑜 𝐴) ∈ On)
1513, 14sylan 487 . . . . . . 7 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → (𝐶𝑜 𝐴) ∈ On)
16 om1 7509 . . . . . . 7 ((𝐶𝑜 𝐴) ∈ On → ((𝐶𝑜 𝐴) ·𝑜 1𝑜) = (𝐶𝑜 𝐴))
1715, 16syl 17 . . . . . 6 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → ((𝐶𝑜 𝐴) ·𝑜 1𝑜) = (𝐶𝑜 𝐴))
18 ondif2 7469 . . . . . . . . 9 (𝐶 ∈ (On ∖ 2𝑜) ↔ (𝐶 ∈ On ∧ 1𝑜𝐶))
1918simprbi 479 . . . . . . . 8 (𝐶 ∈ (On ∖ 2𝑜) → 1𝑜𝐶)
2019adantr 480 . . . . . . 7 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → 1𝑜𝐶)
2113adantr 480 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → 𝐶 ∈ On)
22 simpr 476 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → 𝐴 ∈ On)
23 dif20el 7472 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐶)
2423adantr 480 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → ∅ ∈ 𝐶)
25 oen0 7553 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶𝑜 𝐴))
2621, 22, 24, 25syl21anc 1317 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → ∅ ∈ (𝐶𝑜 𝐴))
27 omordi 7533 . . . . . . . 8 (((𝐶 ∈ On ∧ (𝐶𝑜 𝐴) ∈ On) ∧ ∅ ∈ (𝐶𝑜 𝐴)) → (1𝑜𝐶 → ((𝐶𝑜 𝐴) ·𝑜 1𝑜) ∈ ((𝐶𝑜 𝐴) ·𝑜 𝐶)))
2821, 15, 26, 27syl21anc 1317 . . . . . . 7 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → (1𝑜𝐶 → ((𝐶𝑜 𝐴) ·𝑜 1𝑜) ∈ ((𝐶𝑜 𝐴) ·𝑜 𝐶)))
2920, 28mpd 15 . . . . . 6 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → ((𝐶𝑜 𝐴) ·𝑜 1𝑜) ∈ ((𝐶𝑜 𝐴) ·𝑜 𝐶))
3017, 29eqeltrrd 2689 . . . . 5 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → (𝐶𝑜 𝐴) ∈ ((𝐶𝑜 𝐴) ·𝑜 𝐶))
31 oesuc 7494 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶𝑜 suc 𝐴) = ((𝐶𝑜 𝐴) ·𝑜 𝐶))
3213, 31sylan 487 . . . . 5 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → (𝐶𝑜 suc 𝐴) = ((𝐶𝑜 𝐴) ·𝑜 𝐶))
3330, 32eleqtrrd 2691 . . . 4 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴))
3433expcom 450 . . 3 (𝐴 ∈ On → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴)))
35 oecl 7504 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶𝑜 𝑦) ∈ On)
3613, 35sylan 487 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐶𝑜 𝑦) ∈ On)
37 om1 7509 . . . . . . . . . 10 ((𝐶𝑜 𝑦) ∈ On → ((𝐶𝑜 𝑦) ·𝑜 1𝑜) = (𝐶𝑜 𝑦))
3836, 37syl 17 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → ((𝐶𝑜 𝑦) ·𝑜 1𝑜) = (𝐶𝑜 𝑦))
3919adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → 1𝑜𝐶)
4013adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → 𝐶 ∈ On)
41 simpr 476 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → 𝑦 ∈ On)
4223adantr 480 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → ∅ ∈ 𝐶)
43 oen0 7553 . . . . . . . . . . . 12 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶𝑜 𝑦))
4440, 41, 42, 43syl21anc 1317 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → ∅ ∈ (𝐶𝑜 𝑦))
45 omordi 7533 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝐶𝑜 𝑦) ∈ On) ∧ ∅ ∈ (𝐶𝑜 𝑦)) → (1𝑜𝐶 → ((𝐶𝑜 𝑦) ·𝑜 1𝑜) ∈ ((𝐶𝑜 𝑦) ·𝑜 𝐶)))
4640, 36, 44, 45syl21anc 1317 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (1𝑜𝐶 → ((𝐶𝑜 𝑦) ·𝑜 1𝑜) ∈ ((𝐶𝑜 𝑦) ·𝑜 𝐶)))
4739, 46mpd 15 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → ((𝐶𝑜 𝑦) ·𝑜 1𝑜) ∈ ((𝐶𝑜 𝑦) ·𝑜 𝐶))
4838, 47eqeltrrd 2689 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐶𝑜 𝑦) ∈ ((𝐶𝑜 𝑦) ·𝑜 𝐶))
49 oesuc 7494 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶𝑜 suc 𝑦) = ((𝐶𝑜 𝑦) ·𝑜 𝐶))
5013, 49sylan 487 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐶𝑜 suc 𝑦) = ((𝐶𝑜 𝑦) ·𝑜 𝐶))
5148, 50eleqtrrd 2691 . . . . . . 7 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐶𝑜 𝑦) ∈ (𝐶𝑜 suc 𝑦))
52 suceloni 6905 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
53 oecl 7504 . . . . . . . . 9 ((𝐶 ∈ On ∧ suc 𝑦 ∈ On) → (𝐶𝑜 suc 𝑦) ∈ On)
5413, 52, 53syl2an 493 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (𝐶𝑜 suc 𝑦) ∈ On)
55 ontr1 5688 . . . . . . . 8 ((𝐶𝑜 suc 𝑦) ∈ On → (((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦) ∧ (𝐶𝑜 𝑦) ∈ (𝐶𝑜 suc 𝑦)) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦)))
5654, 55syl 17 . . . . . . 7 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → (((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦) ∧ (𝐶𝑜 𝑦) ∈ (𝐶𝑜 suc 𝑦)) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦)))
5751, 56mpan2d 706 . . . . . 6 ((𝐶 ∈ (On ∖ 2𝑜) ∧ 𝑦 ∈ On) → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦)))
5857expcom 450 . . . . 5 (𝑦 ∈ On → (𝐶 ∈ (On ∖ 2𝑜) → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦))))
5958adantr 480 . . . 4 ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝐶 ∈ (On ∖ 2𝑜) → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦))))
6059a2d 29 . . 3 ((𝑦 ∈ On ∧ 𝐴𝑦) → ((𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝑦))))
61 bi2.04 375 . . . . . 6 ((𝐴𝑦 → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))) ↔ (𝐶 ∈ (On ∖ 2𝑜) → (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))))
6261ralbii 2963 . . . . 5 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))) ↔ ∀𝑦𝑥 (𝐶 ∈ (On ∖ 2𝑜) → (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))))
63 r19.21v 2943 . . . . 5 (∀𝑦𝑥 (𝐶 ∈ (On ∖ 2𝑜) → (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))) ↔ (𝐶 ∈ (On ∖ 2𝑜) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))))
6462, 63bitri 263 . . . 4 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))) ↔ (𝐶 ∈ (On ∖ 2𝑜) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))))
65 limsuc 6941 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6665biimpa 500 . . . . . . . . 9 ((Lim 𝑥𝐴𝑥) → suc 𝐴𝑥)
67 elex 3185 . . . . . . . . . . . . 13 (suc 𝐴𝑥 → suc 𝐴 ∈ V)
68 sucexb 6901 . . . . . . . . . . . . . 14 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
69 sucidg 5720 . . . . . . . . . . . . . 14 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7068, 69sylbir 224 . . . . . . . . . . . . 13 (suc 𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7167, 70syl 17 . . . . . . . . . . . 12 (suc 𝐴𝑥𝐴 ∈ suc 𝐴)
72 eleq2 2677 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → (𝐴𝑦𝐴 ∈ suc 𝐴))
73 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝐴 → (𝐶𝑜 𝑦) = (𝐶𝑜 suc 𝐴))
7473eleq2d 2673 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦) ↔ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴)))
7572, 74imbi12d 333 . . . . . . . . . . . . 13 (𝑦 = suc 𝐴 → ((𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) ↔ (𝐴 ∈ suc 𝐴 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴))))
7675rspcv 3278 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐴 ∈ suc 𝐴 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴))))
7771, 76mpid 43 . . . . . . . . . . 11 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴)))
7877anc2li 578 . . . . . . . . . 10 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (suc 𝐴𝑥 ∧ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴))))
7973eliuni 4462 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 suc 𝐴)) → (𝐶𝑜 𝐴) ∈ 𝑦𝑥 (𝐶𝑜 𝑦))
8078, 79syl6 34 . . . . . . . . 9 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐶𝑜 𝐴) ∈ 𝑦𝑥 (𝐶𝑜 𝑦)))
8166, 80syl 17 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐶𝑜 𝐴) ∈ 𝑦𝑥 (𝐶𝑜 𝑦)))
8281adantr 480 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐶𝑜 𝐴) ∈ 𝑦𝑥 (𝐶𝑜 𝑦)))
8313adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2𝑜)) → 𝐶 ∈ On)
84 simpl 472 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2𝑜)) → Lim 𝑥)
8523adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2𝑜)) → ∅ ∈ 𝐶)
86 vex 3176 . . . . . . . . . . 11 𝑥 ∈ V
87 oelim 7501 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐶) → (𝐶𝑜 𝑥) = 𝑦𝑥 (𝐶𝑜 𝑦))
8886, 87mpanlr1 718 . . . . . . . . . 10 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐶) → (𝐶𝑜 𝑥) = 𝑦𝑥 (𝐶𝑜 𝑦))
8983, 84, 85, 88syl21anc 1317 . . . . . . . . 9 ((Lim 𝑥𝐶 ∈ (On ∖ 2𝑜)) → (𝐶𝑜 𝑥) = 𝑦𝑥 (𝐶𝑜 𝑦))
9089adantlr 747 . . . . . . . 8 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐶𝑜 𝑥) = 𝑦𝑥 (𝐶𝑜 𝑦))
9190eleq2d 2673 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2𝑜)) → ((𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥) ↔ (𝐶𝑜 𝐴) ∈ 𝑦𝑥 (𝐶𝑜 𝑦)))
9282, 91sylibrd 248 . . . . . 6 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥)))
9392ex 449 . . . . 5 ((Lim 𝑥𝐴𝑥) → (𝐶 ∈ (On ∖ 2𝑜) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦)) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥))))
9493a2d 29 . . . 4 ((Lim 𝑥𝐴𝑥) → ((𝐶 ∈ (On ∖ 2𝑜) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))) → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥))))
9564, 94syl5bi 231 . . 3 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑦))) → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝑥))))
963, 6, 9, 12, 34, 60, 95tfindsg2 6953 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐶 ∈ (On ∖ 2𝑜) → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝐵)))
9796impancom 455 1 ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐴𝐵 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  c0 3874   ciun 4455  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549  1𝑜c1o 7440  2𝑜c2o 7441   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oeord  7555  oecan  7556  oeworde  7560  oelimcl  7567
  Copyright terms: Public domain W3C validator